Abstract

A bionic hierarchy generative design algorithm inspired by the leaf vein growth process is presented for the layout design of heat conduction channels. The design domain is discretized based on the element-free Galerkin (EFG) method. The generations of main channels and lateral channels are separated. The effectiveness of the developed bionic hierarchy generative design approach is investigated based on the general “volume-to-point” heat conduction problem.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
2.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.10.1016/j.ijheatmasstransfer.2008.12.013
3.
Zhang
,
Y.
, and
Liu
,
S.
,
2008
, “
Design of Conducting Paths Based on Topology Optimization
,”
Heat Mass Transfer
,
44
(
10
), pp.
1217
1227
.10.1007/s00231-007-0365-1
4.
Lin
,
Q.
,
Hong
,
J.
,
Liu
,
Z.
,
Li
,
B.
, and
Wang
,
J.
,
2018
, “
Investigation Into the Topology Optimization for Conductive Heat Transfer Based on Deep Learning Approach
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
103
109
.10.1016/j.icheatmasstransfer.2018.07.001
5.
Lin
,
Q.
,
Liu
,
Z.
, and
Hong
,
J.
,
2019
, “
Method for Directly and Instantaneously Predicting Conductive Heat Transfer Topologies by Using Supervised Deep Learning
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104368
.10.1016/j.icheatmasstransfer.2019.104368
6.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
,
2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5071
5083
.10.1016/j.ijheatmasstransfer.2004.06.010
7.
Ma
,
C.
,
Duan
,
Y.
,
Yu
,
B.
,
Sun
,
J.
, and
Tu
,
Q.
,
2017
, “
The Comprehensive Effect of Surface Texture and Roughness Under Hydrodynamic and Mixed Lubrication Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
10
), pp.
1307
1319
.10.1177/1350650117693146
8.
Lin
,
Q.
,
Bao
,
Q.
,
Li
,
K.
,
Khonsari
,
M. M.
, and
Zhao
,
H.
,
2018
, “
An Investigation Into the Transient Behavior of Journal Bearing With Surface Texture Based on Fluid-Structure Interaction Approach
,”
Tribol. Int.
,
118
, pp.
246
255
.10.1016/j.triboint.2017.09.026
9.
Dai
,
Q.
,
Huang
,
W.
, and
Wang
,
X.
,
2018
, “
Contact Angle Hysteresis Effect on the Thermocapillary Migration of Liquid Droplets
,”
J. Colloid Interface Sci.
,
515
, pp.
32
38
.10.1016/j.jcis.2018.01.019
10.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
811
.10.1016/0017-9310(96)00175-5
11.
Feng
,
H. J.
,
Chen
,
L. G.
,
Xie
,
Z. H.
, and
Sun
,
F. R.
,
2016
, “
Volume-Point” Heat Conduction Constructal Optimization Based on Minimization of Maximum Thermal Resistance With Triangular Element at Micro and Nanoscales
,”
J. Energy Inst.
,
89
(
2
), pp.
302
312
.10.1016/j.joei.2015.01.016
12.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
.10.1016/S0017-9310(01)00269-1
13.
Chen
,
L.
,
2012
, “
Progress in Study on Constructal Theory and Its Applications
,”
Sci. China Technol. Sci.
,
55
(
3
), pp.
802
820
.10.1007/s11431-011-4701-9
14.
Almogbel
,
M.
, and
Bejan
,
A.
,
2001
, “
Constructal Optimization of Nonuniformly Distributed Tree-Shaped Flow Structures for Conduction
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4185
4194
.10.1016/S0017-9310(01)00080-1
15.
Neagu
,
M.
, and
Bejan
,
A.
,
1999
, “
Constructal-Theory Tree Networks of “Constant” Thermal Resistance
,”
J. Appl. Phys.
,
86
(
2
), pp.
1136
1144
.10.1063/1.370855
16.
Snider
,
A. D.
, and
Kraus
,
A. D.
,
1981
, “
A General Extended Surface Analysis Method
,”
ASME J. Heat Transfer
,
103
(
4
), pp.
699
704
.10.1115/1.3244529
17.
Liu
,
W.
,
Yi
,
P.
,
Tao
,
L.
,
Luo
,
Y.
, and
Huang
,
K.
,
2016
, “
The Performance of the Vapor Chamber Based on the Plant Leaf
,”
Int. J. Heat Mass Transfer
,
98
, pp.
746
757
.10.1016/j.ijheatmasstransfer.2016.02.091
18.
Xia
,
Z. Z.
,
Cheng
,
X. G.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
,
2004
, “
Bionic Optimization of Heat Transport Paths for Heat Conduction Problems
,”
J. Enhanced Heat Transfer
,
11
(
2
), pp.
119
132
.10.1615/JEnhHeatTransf.v11.i2.20
19.
Ding
,
X.
, and
Yamazaki
,
K.
,
2007
, “
Constructal Design of Cooling Channel in Heat Transfer System by Utilizing Optimality of Branch Systems in Nature
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
245
255
.10.1115/1.2426357
20.
Lin
,
Q.
,
Wang
,
J.
,
Hong
,
J.
,
Liu
,
Z.
, and
Wang
,
Z.
,
2019
, “
A Biomimetic Generative Optimization Design for Conductive Heat Transfer Based on Element-Free Galerkin Method
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
67
72
.10.1016/j.icheatmasstransfer.2018.12.001
21.
Dolbow
,
J.
, and
Belytschko
,
T.
,
1998
, “
An Introduction to Programming the Meshless Element Free Galerkin Method
,”
Arch. Comput. Methods Eng.
,
5
(
3
), pp.
207
241
.10.1007/BF02897874
22.
Sack
,
L.
,
Scoffoni
,
C.
,
Mckown
,
A. D.
,
Frole
,
K.
,
Rawls
,
M.
,
Havran
,
J. C.
,
Tran
,
H.
, and
Tran
,
T. J. N. C.
,
2012
, “
Developmentally Based Scaling of Leaf Venation Architecture Explains Global Ecological Patterns
,”
Nature Commun.
,
3
(
837
), p.
837
.10.1038/ncomms1835
You do not currently have access to this content.