Abstract

This research work investigates the effect of point/line heat source/sink on free convection flow between two vertical channels with suction/injection. The Heaviside step function is used to model the constant heat source/sink, which is then transformed into line source/sink. The governing equations describing flow formation and heat transfer are obtained and solved using the Laplace transform approach. The effect of physical parameters such as suction/injection, Prandtl number, and heat source/sink on velocity and temperature fields are studied graphically, while the skin friction, Nusselt number, and mass flowrate are analyzed through tabular representation. Results indicate that as the value of point/line source parameters rise, velocity and temperature profile of fluid flow are enhanced.

References

1.
Shojaefar
,
M. H.
,
Noorpoor
,
A. R.
,
Avanesians
,
A.
, and
Ghaffarpou
,
M.
,
2005
, “
Numerical Investigation of Flow Control by Suction and Injection on a Subsonic Airfoil
,”
Am. J. Appl. Sci.
,
2
(
10
), pp.
1474
1480
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.1567&rep=rep1&type=pdf
2.
Saeid
,
N. H.
,
2006
, “
Natural Convection From Two Thermal Sources in a Vertical Porous Layer
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
1
), pp.
104
109
.10.1115/1.2136367
3.
Uwanta
,
I. J.
, and
Hamza
,
M. M.
,
2014
, “
Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid Between Vertical Porous Plates With Thermal Diffusion
,”
Int. Scholarly Res. Not.
,
2014
, pp.
1
14
.10.1155/2014/980270
4.
Jha
,
B. K.
,
Aina
,
T.
, and
Ajiya
,
A. T.
,
2015
, “
Role of Suction/Injection on MHD Natural Convection Flow in a Vertical Microchannel
,”
Int. J. Energy Technol.
,
7
(
2
), pp.
30
39
.https://researchgate.net/publication/278884574
5.
Jha
,
B. K.
,
Isah
,
B. Y.
, and
Uwanta
,
I. J.
,
2018
, “
Combined Effect of Suction/Injection on MHD Free-Convection Flow in a Vertical Channel With Thermal Radiation
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1069
–10
88
.10.1016/j.asej.2016.06.001
6.
Falade
,
J. A.
,
Ukaegbu
,
J.
,
Egere
,
A. C.
, and
Adesanya
,
S.
,
2017
, “
MHD Oscillatory Flow Through a Porous Channel Saturated With Porous Medium
,”
Alexandria Eng. J.
,
56
(
1
), pp.
147
–1
52
.10.1016/j.aej.2016.09.016
7.
Jha
,
B. K.
,
Azeez
,
L. A.
, and
Oni
,
M. O.
,
2019
, “
Unsteady Hydromagnetic-Free Convection Flow With Suction/Injection
,”
J. Taibah Univ. Sci.
,
13
(
1
), pp.
136
145
.10.1080/16583655.2018.1545624
8.
Jha
,
B. K.
, and
Ajibade
,
A. O.
,
2009
, “
Free Convective Flow of Heat Generating/Absorbing Fluid Between Vertical Porous Plates With Periodic Heat Input
,”
Int. Commun. Heat Mass Transfer
,
36
(
6
), pp.
624
631
.10.1016/j.icheatmasstransfer.2009.03.003
9.
Kawamura
,
H.
,
Nishino
,
K.
,
Matsumoto
,
S.
, and
Ueno
,
I.
,
2012
, “
Report on Microgravity Experiments of Marangoni Convection Aboard International Space Station
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
3
), p. 031005.10.1115/1.4005145
10.
Keshtkar
,
M. M.
,
Esmaili
,
N.
, and
Ghazanfari
,
M. R.
,
2014
, “
Effect of Heat Source/Sink on MHD Mixed Convection Boundary Layer Flow on a Vertical Surface in a Porous Medium Saturated by a Nanofluid With Suction or Injection
,”
Res. Inventy Int. J. Eng. Sci.
,
4
(
5
), pp.
1
11
.https://www.academia.edu/download/33834993/A045001011.pdf
11.
Jha
,
B. K.
,
Oni
,
M. O.
, and
Aina
,
B.
,
2018
, “
Steady Fully Developed Mixed Convection Flow in a Vertical Micro-Concentric-Annulus With Heat Generating/Absorbing Fluid: An Exact Solution
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1289
1301
.10.1016/j.asej.2016.08.005
12.
Oni
,
M. O.
,
2017
, “
Combined Effect of Heat Source, Porosity and Thermal Radiation on Mixed Convection Flow in a Vertical Annulus: An Exact Solution
,”
Eng. Sci. Technol. Int. J.
,
20
(
2
), pp.
518
527
.10.1016/j.jestch.2016.12.009
13.
Leong
,
K. C.
,
Li
,
H. Y.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2011
, “
Convective Heat Transfer in Graphite Foam Heat Sinks With Baffle and Stagger Structures
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), p.
060902
.10.1115/1.4003449
14.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech.-B/Fluids
,
28
(
5
), pp.
630
640
.10.1016/j.euromechflu.2009.05.006
15.
El-dabe
,
N. T. M.
,
Hassan
,
M. A.
, and
Godh
,
W. A.
,
2012
, “
Unsteady Magnetohydrodynamic Free Convection Flow Past a Semi-Infinite Permeable Moving Plate Through Porous Medium With Chemical Reaction and Radiation Absorption
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
2
), p.
024501
.10.1115/1.4007474
16.
Jha
,
B. K.
, and
Samaila
,
G.
,
2021
, “
Nonlinear Approximation for Natural Convection Flow Near a Vertical Plate With Thermal Radiation Effect
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
074501
.10.1115/1.4050854
17.
Singh
,
A. K.
, and
Singh
,
A. K.
,
2017
, “
Effect of Heat Source/Sink on Free Convective Flow of a Polar Fluid Between Vertical Concentric Annuli
,”
J. Appl. Math. Phys.
,
5
(
9
), pp.
1750
1762
.10.4236/jamp.2017.591762
18.
Biswas
,
R.
, and
Ahmmed
,
S. F.
,
2018
, “
Effects of Hall Current and Chemical Reaction on Magnetohydrodynamics Unsteady Heat and Mass Transfer of Casson Nanofluid Flow Through a Vertical Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
9
), p.
092402
.10.1115/1.4039909
19.
Dwivedi
,
N.
,
Singh
,
A. K.
, and
Kumar
,
A.
,
2019
, “
Natural Convection Between Vertical Walls Due to Point/Line Heat Source/Sink
,”
Int. J. Appl. Comput. Math.
,
5
(
3
), p.
75
.10.1007/s40819-019-0659-2
20.
Dwivedi
,
N.
, and
Singh
,
A. K.
,
2020
, “
Effect of Point/Line Heat Source and Hall Current on Free Convective Flow Between Two Vertical Walls
,”
Pramana
,
94
(
1
), p.
142
.10.1007/s12043-020-02009-5
21.
Dwivedi
,
N.
, and
Singh
,
A. K.
,
2020
, “
Effect of a Point/Line Heat Source on Hydromagnetic Free Convection Between Vertical Walls Due to Induced Magnetic Field
,”
Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
, epub.10.1007/s40010-020-00720-x
22.
Dwivedi
,
N.
, and
Singh
,
A. K.
,
2022
, “
Effect of Line/Point Heat Source and Hall Current With Induced Magnetic Field on Free Convective Flow in Vertical Walls
,”
Ind. J. Phys.
,
96
(
1
), pp.
169
179
.10.1007/s12648-020-01953-7
23.
Ostrach
,
S.
,
1954
, “
Combined Natural-and Forced-Convection Laminar Flow and Heat Transfer of Fluids With and Without Heat Sources in Channels With Linearly Varying Wall Temperatures
,”
NACA,
p.
3141
.
24.
Chambré
,
P. L.
,
1957
, “
The Laminar Boundary Layer With Distributed Heat Sources or Sinks*
,”
Appl. Sci. Res. Sect. A
,
6
(
5–6
), pp.
393
401
.10.1007/BF03185044
25.
Inman
,
R. M.
,
1962
, “
Experimental Study of Temperature Distribution in Laminar Tube Flow of a Fluid With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
5
(
11
), pp.
1053
1058
.10.1016/0017-9310(62)90058-3
26.
Foraboschi
,
F. P.
, and
Federico
,
I. D.
,
1964
, “
Heat Transfer in Laminar Flow of Non-Newtonian Heat-Generating Fluids
,”
Int. J. Heat Mass Transfer
,
7
(
3
), pp.
315
–3
25
.10.1016/0017-9310(64)90107-3
27.
Moalem
,
D.
,
1976
, “
Steady State Heat Transfer Within Porous Medium With Temperature Dependent Heat Generation
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
529
–5
37
.10.1016/0017-9310(76)90166-6
28.
Ali
,
H. M.
,
2020
, “
Recent Advancements in PV Cooling and Efficiency Enhancement Integrating Phase Change Materials Based Systems – A Comprehensive Review
,”
Sol. Energy
,
197
, pp.
163
–1
98
.10.1016/j.solener.2019.11.075
29.
Pordanjani
,
A. H.
,
Aghakhani
,
S.
,
Afrand
,
M.
,
Sharifpur
,
M.
,
Meyer
,
J.
,
Xu
,
H.
,
Ali
,
H. M.
,
Karimi
,
N.
, and
Cheraghian
,
G.
,
2021
, “
Nanofluids: Physical Phenomena, Applications in Thermal Systems and the Environment Effects-a Critical Review
,”
J Clean Prod.
,
320
, p.
128573
.10.1016/j.jclepro.2021.128573
30.
Wu
,
X.
,
Li
,
C.
,
Zhou
,
Z.
,
Nie
,
X.
,
Chen
,
Y.
,
Zhang
,
Y.
,
Cao
,
H.
,
Liu
,
B.
,
Zhang
,
N.
,
Said
,
Z.
,
Debnath
,
S.
,
Jamil
,
M.
,
Ali
,
H. M.
, and
Sharma
,
S.
,
2021
, “
Circulating Purification of Cutting Fluid: An Overview
,”
Int. J. Adv. Manuf. Technol.
,
117
(
9–10
), pp.
2565
600
.10.1007/s00170-021-07854-1
31.
Ejaz
,
F.
,
Pao
,
W.
, and
Ali
,
H. M.
,
2021
, “
Numerical Evaluation of Separation Efficiency in the Diverging T-Junction for Slug Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
46
, p.
101199
.10.1016/j.seta.2021.101199
32.
Said
,
Z.
,
Ghodbane
,
M.
,
Tiwari
,
A. K.
,
Ali
,
H. M.
,
Boumeddane
,
B.
, and
Ali
,
Z. M.
,
2021
, “
4E (Energy, Exergy, Economic, and Environment) Examination of a Small LFR Solar Water Heater: An Experimental and Numerical Study
,”
Case Stud. Therm. Eng.
,
27
, p.
101277
.10.1016/j.csite.2021.101277
33.
Mourad
,
A.
,
Aissa
,
A.
,
Mebarek-Oudina
,
F.
,
Jamshed
,
W.
,
Ahmed
,
W.
,
Ali
,
H. M.
, and
Rashad
,
A. M.
,
2021
, “
Galerkin Finite Element Analysis of Thermal Aspects of Fe3O4-MWCNT/Water Hybrid Nanofluid Filled in Wavy Enclosure With Uniform Magnetic Field Effect
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105461
.10.1016/j.icheatmasstransfer.2021.105461
34.
Saleem
,
M.
,
Algahtani
,
A.
,
Rehman
,
S. U.
,
Javed
,
M. S.
,
Irshad
,
K.
,
Ali
,
H. M.
,
Malik
,
M. Z.
,
Ali
,
A.
,
Tirth
,
V.
, and
Islam
,
S.
,
2021
, “
Solution Processed Zn1−x−ySmxCuyO Nanorod Arrays for Dye Sensitized Solar Cells
,”
Nanomaterials
,
11
(
7
), pp.
1710
1715
.10.3390/nano11071710
35.
Ali
,
A.
,
Al-Sulaiman
,
F.
,
Al-Duais
,
I.
,
Irshad
,
K.
,
Malik
,
M. Z.
,
Shafiullah
,
M.
,
Zahir
,
M. H.
,
Ali
,
H. M.
, and
Malik
,
S. A.
,
2021
, “
Renewable Portfolio Standard Development Assessment in the Kingdom of Saudi Arabia From the Perspective of Policy Networks Theory
,”
Processes
,
9
(
7
), pp.
1123
1122
.10.3390/pr9071123
You do not currently have access to this content.