Abstract

This study investigates the unsteady, two-dimensional flow and heat transfer past a rotationally oscillating circular cylinder in linear shear flow. A higher order compact (HOC) finite difference scheme is used to solve the governing Navier–Stokes equations coupled with the energy equation on a nonuniform grid in polar coordinates. The hydrodynamic and thermal features of the flow are mainly influenced by the shear rate (K), Reynolds number (Re), Prandtl number (Pr), and the cylinder oscillation parameters, i.e., oscillation amplitude (αm), the frequency ratio (fr). The simulations are performed for Re=100,Pr=0.51.0,0.0K0.15, and 0.5αm2.0. The numerical scheme is validated with the existing literature studies. Partial and full vortex suppression is observed for certain values of shear parameter K. The connection between heat transfer and vortex shedding phenomenon is examined where a pronounced increase in the heat transfer is observed for certain values of oscillation parameter, relative to the nonshear flow case.

References

1.
Kalita
,
J. C.
, and
Ray
,
R. K.
,
2009
, “
A Transformation-Free Hoc Scheme for Incompressible Viscous Flows Past an Impulsively Started Circular Cylinder
,”
J. Comput. Phy.
,
228
(
14
), pp.
5207
5236
.10.1016/j.jcp.2009.04.016
2.
Mittal
,
H.
,
2016
, “
A Class of Higher Order Accurate Schemes for Fluid Interface Problems
,”
Ph.D. thesis
,
Indian Institute of Technology
, Mandi, India.http://hdl.handle.net/123456789/199
3.
Ray
,
R. K.
, and
Kalita
,
J. C.
,
2016
, “
Higher-Order-Compact Simulation of Unsteady Flow Past a Rotating Cylinder at Moderate Reynolds Numbers
,”
Comput. Appl. Math.
,
35
(
1
), pp.
219
250
.10.1007/s40314-014-0191-2
4.
Mittal
,
H.
,
Ray
,
R. K.
, and
Al-Mdallal
,
Q. M.
,
2017
, “
A Numerical Study of Initial Flow Past an Impulsively Started Rotationally Oscillating Circular Cylinder Using a Transformation-Free Hoc Scheme
,”
Phys. Fluids
,
29
(
9
), p.
093603
.10.1063/1.5001731
5.
Mittal
,
H.
,
Al-Mdallal
,
Q. M.
, and
Ray
,
R. K.
,
2017
, “
Locked-on Vortex Shedding Modes From a Rotationally Oscillating Circular Cylinder
,”
Ocean Eng.
,
146
, pp.
324
338
.10.1016/j.oceaneng.2017.09.034
6.
Kumar
,
A.
,
2019
, “
Unsteady Flow Separation from the Surface of Solid Cylinders in Laminar Shear Flow: A Structural Bifurcation Analysis
,”
Ph.D. thesis
,
IIT Mandi
, Mandi, India.http://hdl.handle.net/123456789/204
7.
Kumar
,
A.
, and
Ray
,
R. K.
,
2019
, “
Structural Bifurcation Analysis of Vortex Shedding From Shear Flow Past Circular Cylinder
,”
Comput. Appl. Math.
,
38
(
3
), p.
121
.10.1007/s40314-019-0895-4
8.
Sellappan
,
P.
, and
Pottebaum
,
T.
,
2014
, “
Vortex Shedding and Heat Transfer in Rotationally Oscillating Cylinders
,”
J. Fluid Mech.
,
748
, pp.
549
579
.10.1017/jfm.2014.191
9.
Strouhal
,
V.
,
1878
, “
Über Eine Besondere Art Der Tonerregung
,”
Annalen Der Phys.
,
241
(
10
), pp.
216
251
.10.1002/andp.18782411005
10.
Kumar
,
S.
,
Lopez
,
C.
,
Probst
,
O.
,
Francisco
,
G.
,
Askari
,
D.
, and
Yang
,
Y.
,
2013
, “
Flow Past a Rotationally Oscillating Cylinder
,”
J. Fluid Mech.
,
735
, pp.
307
346
.10.1017/jfm.2013.469
11.
Lu
,
X.-Y.
, and
Sato
,
J.
,
1996
, “
A Numerical Study of Flow Past a Rotationally Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
10
(
8
), pp.
829
849
.10.1006/jfls.1996.0055
12.
Gao
,
Y-y.
,
Yin
,
C-s.
,
Yang
,
K.
,
Zhao
,
X-Z.
, and
Tan
,
S. K.
,
2017
, “
Experimental Study on Flow Past a Rotationally Oscillating Cylinder
,”
China Ocean Eng.
,
31
(
4
), pp.
495
503
.10.1007/s13344-017-0056-8
13.
Yawar
,
A.
,
Ebrahem
,
M.
,
Manzoor
,
S.
,
Sheikh
,
N.
, and
Ali
,
M.
,
2019
, “
Transient Cross Flow and Heat Transfer Over a Rotationally Oscillating Cylinder Subjected to Gust Impulse
,”
Int. J. Heat Mass Transfer
,
137
, pp.
108
123
.10.1016/j.ijheatmasstransfer.2019.03.113
14.
Ganta
,
N.
,
Mahato
,
B.
, and
Bhumkar
,
Y. G.
,
2019
, “
Analysis of Sound Generation by Flow Past a Circular Cylinder Performing Rotary Oscillations Using Direct Simulation Approach
,”
Phys. Fluids
,
31
(
2
), p.
026104
.10.1063/1.5063642
15.
Zebib
,
A.
, and
Wo
,
Y.
,
1989
, “
A Two-Dimensional Conjugate Heat Transfer Model for Forced Air Cooling of an Electronic Device
,”
ASME. J. Electron. Packag.
,
111
(
1
), pp.
41
45
.10.1115/1.3226507
16.
Yang
,
R.-J.
, and
Fu
,
L.-M.
,
2001
, “
Thermal and Flow Analysis of a Heated Electronic Component
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2261
2275
.10.1016/S0017-9310(00)00265-9
17.
Ganesan
,
P.
, and
Loganathan
,
P.
,
2001
, “
Unsteady Natural Convective Flow Past a Moving Vertical Cylinder With Heat and Mass Transfer
,”
Heat Mass Transfer
,
37
(
1
), pp.
59
65
.10.1007/s002310000128
18.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Nath
,
G.
,
2000
, “
Combined Heat and Mass Transfer Along a Vertical Moving Cylinder With a Free Stream
,”
Heat Mass Transfer
,
36
(
3
), pp.
237
246
.10.1007/s002310050391
19.
Mahfouz
,
F.
, and
Badr
,
H.
,
2000
, “
Forced Convection From a Rotationally Oscillating Cylinder Placed in a Uniform Stream
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3093
3104
.10.1016/S0017-9310(99)00326-9
20.
Mittal
,
H.
, and
Al-Mdallal
,
Q. M.
,
2018
, “
A Numerical Study of Forced Convection From an Isothermal Cylinder Performing Rotational Oscillations in a Uniform Stream
,”
Int. J. Heat Mass Transfer
,
127
, pp.
357
374
.10.1016/j.ijheatmasstransfer.2018.07.022
21.
Bouakkaz
,
R.
,
Talbi
,
K.
,
Ouazzazi
,
M.
,
Khelili
,
Y.
, and
Salhi
,
F.
,
2015
, “
Effect of Rotation Rates on the Laminar Flow and Heat Transfer Past a Circular Cylinder
,”
Braz. J. Chem. Eng.
,
32
(
2
), pp.
519
529
.10.1590/0104-6632.20150322s00002539
22.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2009
, “
Numerical Investigation of Heat and Fluid Flow Across a Rotating Circular Cylinder Maintained at Constant Temperature in 2-d Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3205
3216
.10.1016/j.ijheatmasstransfer.2008.12.031
23.
Ghazanfarian
,
J.
, and
Nobari
,
M.
,
2009
, “
A Numerical Study of Convective Heat Transfer From a Rotating Cylinder With Cross-Flow Oscillation
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5402
5411
.10.1016/j.ijheatmasstransfer.2009.06.036
24.
Nobari
,
M.
, and
Ghazanfarian
,
J.
,
2010
, “
Convective Heat Transfer From a Rotating Cylinder With Inline Oscillation
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2026
2036
.10.1016/j.ijthermalsci.2010.05.006
25.
Singh
,
S.
, and
Mittal
,
S.
,
2005
, “
Flow Past a Cylinder: Shear Layer Instability and Drag Crisis
,”
Int. J. Numer. Methods Fluids
,
47
(
1
), pp.
75
98
.10.1002/fld.807
26.
Saxena
,
U.
, and
Laird
,
A.
,
1978
, “
Heat Transfer From a Cylinder Oscillating in a Cross-Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
100
(
4
), pp.
684
689
.10.1115/1.3450877
27.
Leung
,
C.
,
Ko
,
N.
, and
Ma
,
K.
,
1981
, “
Heat Transfer From a Vibrating Cylinder
,”
J. Sound Vib.
,
75
(
4
), pp.
581
582
.10.1016/0022-460X(81)90445-4
28.
Childs
,
E.
, and
Mayle
,
R.
,
1984
, “
Heat Transfer on a Rotationally Oscillating Cylinder in Crossflow
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
85
94
.10.1016/0017-9310(84)90240-0
29.
Cheng
,
C.-H.
,
Chen
,
H.-N.
, and
Aung
,
W.
,
1997
, “
Experimental Study of the Effect of Transverse Oscillation on Convection Heat Transfer From a Circular Cylinder
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp.
474
482
.10.1115/1.2824121
30.
Fu
,
W.-S.
, and
Tong
,
B.-H.
,
2002
, “
Numerical Investigation of Heat Transfer From a Heated Oscillating Cylinder in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
3033
3043
.10.1016/S0017-9310(02)00016-9
31.
Beskok
,
A.
,
Raisee
,
M.
,
Celik
,
B.
,
Yagiz
,
B.
, and
Cheraghi
,
M.
,
2012
, “
Heat Transfer Enhancement in a Straight Channel Via a Rotationally Oscillating Adiabatic Cylinder
,”
Int. J. Therm. Sci.
,
58
, pp.
61
69
.10.1016/j.ijthermalsci.2012.03.012
32.
Al-Mdallal
,
Q.
, and
Mahfouz
,
F.
,
2017
, “
Heat Transfer From a Heated Non-Rotating Cylinder Performing Circular Motion in a Uniform Stream
,”
Int. J. Heat Mass Transfer
,
112
, pp.
147
157
.10.1016/j.ijheatmasstransfer.2017.04.097
33.
Jordan
,
S. K.
, and
Fromm
,
J. E.
,
1972
, “
Laminar Flow Past a Circle in a Shear Flow
,”
Phys. Fluids
,
15
(
6
), pp.
972
976
.10.1063/1.1694058
34.
Cao
,
S.
,
Hirano
,
K.
,
Ozono
,
S.
, and
Wakasugi
,
Y.
,
2000
, “
Vortex Shedding for a Circular Cylinder Placed in Strong Shear Flow
,”
J. Wind Eng.
,
25
(
4
), pp.
85_53
62
.10.5359/jwe.25.85_53
35.
Cao
,
S.
, and
Tamura
,
Y.
,
2008
, “
Flow Around a Circular Cylinder in Linear Shear Flows at Subcritical Reynolds Number
,”
J. Wind Eng. Indus. Aerodyn.
,
96
(
10–11
), pp.
1961
1973
.10.1016/j.jweia.2008.02.041
36.
Cao
,
S.
,
Ozono
,
S.
,
Tamura
,
Y.
,
Ge
,
Y.
, and
Kikugawa
,
H.
,
2010
, “
Numerical Simulation of Reynolds Number Effects on Velocity Shear Flow Around a Circular Cylinder
,”
J. Fluids Struct.
,
26
(
5
), pp.
685
702
.10.1016/j.jfluidstructs.2010.03.003
37.
Wu
,
T.
, and
Chen
,
C.-F.
,
2000
, “
Laminar Boundary-Layer Separation Over a Circular Cylinder in Uniform Shear Flow
,”
Acta Mech.
,
144
(
1–2
), pp.
71
82
.10.1007/BF01181829
38.
Lei
,
C.
,
Cheng
,
L.
, and
Kavanagh
,
K.
,
2000
, “
A Finite Difference Solution of the Shear Flow Over a Circular Cylinder
,”
Ocean Eng.
,
27
(
3
), pp.
271
290
.10.1016/S0029-8018(98)00050-X
39.
Sumner
,
D.
, and
Akosile
,
O.
,
2003
, “
On Uniform Planar Shear Flow Around a Circular Cylinder at Subcritical Reynolds Number
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
441
454
.10.1016/j.jfluidstructs.2003.08.004
40.
Kappler
,
M.
,
Rodi
,
W.
,
Szepessy
,
S.
, and
Badran
,
O.
,
2005
, “
Experiments on the Flow Past Long Circular Cylinders in a Shear Flow
,”
Exp. Fluids
,
38
(
3
), pp.
269
284
.10.1007/s00348-004-0872-5
41.
Kim
,
D.
,
Choi
,
H.
, and
Choi
,
H.
,
2005
, “
Characteristics of Laminar Flow Past a Sphere in Uniform Shear
,”
Phys. Fluids
,
17
(
10
), p.
103602
.10.1063/1.2090327
42.
Kang
,
S.
,
2006
, “
Uniform-Shear Flow Over a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluids Struct.
,
22
(
4
), pp.
541
555
.10.1016/j.jfluidstructs.2006.02.003
43.
Omori
,
T.
,
Jakirlić
,
S.
,
Tropea
,
C.
, and
Obi
,
S.
,
2008
, “
Shearless and Sheared Flow Past a circular cylinder: Comparative Analysis by Means of Les
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
703
720
.10.1016/j.ijheatfluidflow.2008.03.012
44.
Zhang
,
H.
,
Fan
,
B-c.
,
Chen
,
Z-h.
,
Li
,
H-Z.
, and
Li
,
B-m.
,
2014
, “
An in-Depth Study on Vortex-Induced Vibration of a Circular Cylinder With Shear Flow
,”
Comput. Fluids
,
100
, pp.
30
44
.10.1016/j.compfluid.2014.04.031
45.
Yoshino
,
F.
, and
Hayashi
,
T.
,
1984
, “
The Numerical Solution of Flow Around a Rotating Circular Cylinder in Uniform Shear Flow
,”
Bull. JSME
,
27
(
231
), pp.
1850
1857
.10.1299/jsme1958.27.1850
46.
Kurose
,
R.
, and
Komori
,
S.
,
1999
, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
,
384
(
1
), pp.
183
206
.10.1017/S0022112099004164
47.
Kang
,
S.
,
2006
, “
Laminar Flow Over a Steadily Rotating Circular Cylinder Under the Influence of Uniform Shear
,”
Phys. Fluids
,
18
(
4
), p.
047106
.10.1063/1.2189293
48.
Rohlf
,
K.
, and
D'Alessio
,
S.
,
2005
, “
Uniform Shear Flow Past a Circular Cylinder
,”
Acta Mech.
,
178
(
3–4
), pp.
199
222
.10.1007/s00707-004-0197-8
49.
Chew
,
Y.
,
Luo
,
S.
, and
Cheng
,
M.
,
1997
, “
Numerical Study of a Linear Shear Flow Past a Rotating Cylinder
,”
J. Wind Eng. Indus. Aerodyn.
,
66
(
2
), pp.
107
125
.10.1016/S0167-6105(97)00016-0
50.
Stansby
,
P.
,
1976
, “
The Locking-on of Vortex Shedding Due to the Cross-Stream Vibration of Circular Cylinders in Uniform and Shear Flows
,”
J. Fluid Mech.
,
74
(
4
), pp.
641
665
.10.1017/S0022112076001985
51.
Shi
,
J.-M.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Wall Effect on Heat Transfer From a Micro-Cylinder in Near-Wall Shear Flow
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1309
1320
.10.1016/S0017-9310(01)00225-3
52.
Abdella
,
K.
, and
Nalitolela
,
P.
,
2008
, “
Approximate Analytic Solutions for Forced Convection Heat Transfer From a Shear-Flow Past a Rotating Cylinder
,”
Appl. Math. Sci.
,
2
(
11
), pp.
497
527
.http://www.mhikari.com/ams/ams-password-2008/ams-password9-12-2008/abdellaAMS9-12-2008.pdf
53.
Nemati
,
H.
,
Farhadi
,
M.
,
Sedighi
,
K.
, and
Fattahi
,
E.
,
2011
, “
Multi-Relaxation-Time Lattice Boltzman Model for Uniform-Shear Flow Over a Rotating Circular Cylinder
,”
Therm. Sci.
,
15
(
3
), pp.
859
878
.10.2298/TSCI100827082N
54.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder Part 1. mechanisms of Phase Shift and Recovery in the Near Wake
,”
J. Fluid Mech.
,
191
(
-1
), pp.
197
223
.10.1017/S0022112088001569
55.
Williamson
,
C. H.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
381
.10.1016/S0889-9746(88)90058-8
56.
Al-Mdallal
,
Q.
,
Lawrence
,
K.
, and
Kocabiyik
,
S.
,
2007
, “
Forced Streamwise Oscillations of a Circular Cylinder: Locked-on Modes and Resulting Fluid Forces
,”
J. Fluids Struct.
,
23
(
5
), pp.
681
701
.10.1016/j.jfluidstructs.2006.11.001
57.
Milne-Thomson
,
L. M.
,
1996
,
Theoretical Hydrodynamics
,
Courier Corporation
, Dover Publications, INC., New York.
58.
Mittal
,
S.
,
2001
, “
Control of Flow Past Bluff Bodies Using Rotating Control Cylinders
,”
J. Fluids Struct.
,
15
(
2
), pp.
291
326
.10.1006/jfls.2000.0337
59.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2010
, “
Heat and Fluid Flow Across a Rotating Cylinder Dissipating Uniform Heat Flux in 2D Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4672
4683
.10.1016/j.ijheatmasstransfer.2010.06.026
60.
Yan
,
Y.
, and
Zu
,
Y.
,
2008
, “
Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder–a Lbm Approach
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2519
2536
.10.1016/j.ijheatmasstransfer.2007.07.053
You do not currently have access to this content.