Abstract

Impinging jet nozzles are omnipresent in industrial applications. Innovative impinging jet nozzles, such as radial jet reattachment (RJR) and slot jet reattachment (SJR) nozzles, have been proven to be highly efficient tools to enhance heat and mass transfer, compared to traditional in-line jet and slot-jet nozzles. However, the heat and mass transfer in the region immediately underneath these reattachment nozzles are relatively inefficient. The ionic wind is a promising technique for heat transfer enhancement. The ionic flow is induced when free ions are accelerated by an electric field, and exchange momentum with neutral air molecules. In this numerical study, the performance of the SJR nozzle is improved by the application of an electric field, specifically, ionic wind, which is generated in the region directly between the nozzle and the exposed impingement surface. The two-dimensional numerical model is based on the flow field generated by an ionic wind-assisted SJR nozzle. The simulation results show a significant secondary flow induced under the nozzle, due to ionic wind. A significant enhancement of local and average heat transfer coefficients is achieved. The heat transfer increases with the applied potential and nozzle exit velocity. However, the SJR flow pattern is altered when the air exit velocity is below a certain threshold. The simulation results provide an in-depth understanding of the heat transfer characteristics under various operating conditions and pave the way for developing this novel impinging nozzle design.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
2.
Baughn
,
J.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
4
), pp.
1096
1098
.
3.
Colucci
,
D.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.10.1016/0894-1777(96)00015-5
4.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
5.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet
,”
Int. J. Heat Mass Transfer
,
43
(
4
), pp.
555
575
.10.1016/S0017-9310(99)00167-2
6.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
064001
.10.1115/1.4049496
7.
Page
,
R.
,
Hadden
,
L.
, and
Ostowari
,
C.
,
1989
, “
Theory for Radial Jet Reattachment Flow
,”
AIAA J.
,
27
(
11
), pp.
1500
1505
.10.2514/3.10294
8.
Narayanan
,
V.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
1998
, “
Heat Transfer Characteristics of a Slot Jet Reattachment Nozzle
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
2
), pp.
348
356
.10.1115/1.2824255
9.
Seyed-Yagoobi
,
J.
,
Narayanan
,
V.
, and
Page
,
R. H.
,
1998
, “
Comparison of Heat Transfer Characteristics of Radial Jet Reattachment Nozzle to in-Line Impinging Jet Nozzle
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
2
), pp.
335
341
.10.1115/1.2824253
10.
Moreau
,
E.
,
Audier
,
P.
, and
Benard
,
N.
,
2018
, “
Ionic Wind Produced by Positive and Negative Corona Discharges in Air
,”
J. Electrostat.
,
93
, pp.
85
96
.10.1016/j.elstat.2018.03.009
11.
Owsenek
,
B.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp.
604
610
.10.1115/1.2824148
12.
Owsenek
,
B.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
1995
, “
Experimental Investigation of Corona Wind Heat Transfer Enhancement With a Heated Horizontal Flat Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
2
), pp.
309
315
.10.1115/1.2822522
13.
Lai
,
F. C.
,
Huang
,
M.
, and
Wong
,
D. S.
,
2004
, “
EHD-Enhanced Water Evaporation
,”
Dry. Technol.
,
22
(
3
), pp.
597
608
.10.1081/DRT-120030003
14.
Adamiak
,
K.
,
2013
, “
Numerical Models in Simulating Wire-Plate Electrostatic Precipitators: A Review
,”
J. Electrostat.
,
71
(
4
), pp.
673
680
.10.1016/j.elstat.2013.03.001
15.
Zhang
,
Y.
,
Liu
,
L.
,
Chen
,
Y.
, and
Ouyang
,
J.
,
2015
, “
Characteristics of Ionic Wind in Needle-to-Ring Corona Discharge
,”
J. Electrostat.
,
74
, pp.
15
20
.10.1016/j.elstat.2014.12.008
16.
Ma
,
S.
, and
Wu
,
J.
,
2021
, “
Experimental Study on Corona Discharge Characteristics and Heat Transfer Enhancement Application at Atmospheric Pressure
,” IEEE Fourth International Electrical and Energy Conference (
CIEEC
), Wuhan, China, May 28–30, pp.1–5.10.1109/CIEEC50170.2021.9510760
17.
Venkatesh
,
S.
,
Kumar
,
A.
,
Bhattacharya
,
A.
, and
Pramanik
,
S.
,
2021
, “
Ionic Wind Review-2020: Advancement and Application in Thermal Management
,”
Sādhanā
,
46
(
3
), pp.
1
27
.10.1007/s12046-021-01687-0
18.
Lai
,
F. C.
, and
Lai
,
K.-W.
,
2002
, “
EHD-Enhanced Drying With Wire Electrode
,”
Dry. Technol.
,
20
(
7
), pp.
1393
1405
.10.1081/DRT-120005858
19.
Shi
,
C.
,
Martynenko
,
A.
,
Kudra
,
T.
,
Wells
,
P.
,
Adamiak
,
K.
, and
Castle
,
G. o. E.
,
2017
, “
Electrically-Induced Mass Transport in a Multiple Pin-Plate Electrohydrodynamic (EHD) Dryer
,”
J. Food Eng.
,
211
, pp.
39
49
.10.1016/j.jfoodeng.2017.04.035
20.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6047
6053
.10.1016/j.ijheatmasstransfer.2008.05.012
21.
Conesa
,
A. J.
,
Sánchez
,
M.
,
León
,
M.
, and
Cabrera
,
Á.
,
2019
, “
Some Geometrical and Electrical Aspects on the Wire-to-Cylinder Corona Discharge
,”
J. Electrostat.
,
100
, p.
103355
.10.1016/j.elstat.2019.103355
22.
Qu
,
J.
,
Zhang
,
J.
,
Li
,
M.
, and
Tao
,
W.
,
2020
, “
Heat Dissipation of Electronic Components by Ionic Wind From Multi-Needle Electrodes Discharge: Experimental and Multi-Physical Analysis
,”
Int. J. Heat Mass Transfer
,
163
, p.
120406
.10.1016/j.ijheatmasstransfer.2020.120406
23.
Lee
,
J. W.
,
Heo
,
H.
,
Sohn
,
D. K.
, and
Ko
,
H. S.
,
2022
, “
Analysis and Optimization of the Electrohydrodynamic (EHD) Flow With a Wire-to-Two-Cylinder Configuration for Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
182
, p.
121959
.10.1016/j.ijheatmasstransfer.2021.121959
24.
Kaptzov
,
N.
,
1947
,
Elektricheskiye Yavleniya v Gazakh i Vacuume
,
Ogiz
,
Moscow
, pp.
587
630
.
25.
Peek
,
F. W.
,
1920
,
Dielectric Phenomena in High Voltage Engineering
,
McGraw-Hill Book Company
, New York.
26.
Meroth
,
A.
,
Gerber
,
T.
,
Munz
,
C.
,
Levin
,
P.
, and
Schwab
,
A.
,
1999
, “
Numerical Solution of Nonstationary Charge Coupled Problems
,”
J. Electrostat.
,
45
(
3
), pp.
177
198
.10.1016/S0304-3886(98)00046-1
27.
Adamiak
,
K.
, and
Atten
,
P.
,
2004
, “
Simulation of Corona Discharge in Point–Plane Configuration
,”
J. Electrostat.
,
61
(
2
), pp.
85
98
.10.1016/j.elstat.2004.01.021
28.
Ramadhan
,
A. A.
,
Kapur
,
N.
,
Summers
,
J.
, and
Thompson
,
H.
,
2017
, “
Numerical Modelling of Electrohydrodynamic Airflow Induced in a Wire-to-Grid Channel
,”
J. Electrostat.
,
87
, pp.
123
139
.10.1016/j.elstat.2017.04.004
29.
Ghazanchaei
,
M.
,
Adamiak
,
K.
, and
Castle
,
G. P.
,
2015
, “
Predicted Flow Characteristics of a Wire-Nonparallel Plate Type Electrohydrodynamic Gas Pump Using the Finite Element Method
,”
J. Electrostat.
,
73
, pp.
103
111
.10.1016/j.elstat.2014.11.003
30.
Lin
,
P. T.
,
Chang
,
C.-J.
,
Huang
,
H.
, and
Zheng
,
B.
,
2011
,
Design of Cooling System for Electronic Devices Using Impinging Jets
,
Comsol
, Boston, MA.
31.
Maghzian
,
H.
,
2007
,
Simulation of Hydrodynamics of the Jet Impingement Using Arbitrary Lagrangian Eulerian Formulation
,
University of British Columbia
, Vancouver, BC, Canada.
32.
Colas
,
D. F.
,
Ferret
,
A.
,
Pai
,
D. Z.
,
Lacoste
,
D. A.
, and
Laux
,
C. O.
,
2010
, “
Ionic Wind Generation by a Wire-Cylinder-Plate Corona Discharge in Air at Atmospheric Pressure
,”
J. Appl. Phys.
,
108
(
10
), p.
103306
.10.1063/1.3514131
33.
Crowley
,
J.
,
1986
,
Fundamentals of Applied Electrostatics
,
Wiley
,
New York
.
You do not currently have access to this content.