Abstract

This paper presents a comparison of heat transfer and pressure drop during single-phase flows inside diverging, converging, and uniform microgaps using distilled water as the working fluid. The microgaps were created with a plain 10 mm × 10 mm heated copper surface and a polysulfone cover that was either uniform or tapered with an angle of 3.4 deg, and average gap heights of 400 and 800 μm. Experiments were conducted with single-phase water flow with an inlet temperature of 30 °C for flow rates varying from 57 to 498 mL/min and heat flux from 27 to 153 W/cm2 depending on the flowrate and microgap configuration. The uniform configuration resulted in the lowest pressure drop due to the less constricted flow. A slight decrease of pressure drop with heat flux was observed due to temperature dependent properties. The best heat transfer performance was obtained with the converging configuration, which was especially significant at low flow rates and shorter average gap. This behavior could be explained by an increase in the heat transfer coefficient due to flow acceleration in the converging gaps, which compensates for the decrease in temperature difference between the fluid and the surface along the flow length. Overall, the converging microgaps have better performance than uniform or diverging ones for single-phase flows, and this effect is more pronounced at lower flow rates, where the fluid experiences higher temperature changes.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
International Conference on Nanochannels Microchannels and Minichannels
, Rochester, NY, June 17–19, pp.
141
148
.10.1115/ICMM2004-2328
3.
Lu
,
S.
, and
Vafai
,
K.
,
2016
, “
A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
271
284
.10.1016/j.icheatmasstransfer.2016.04.024
4.
Hung
,
T.-C.
, and
Yan
,
W.-M.
,
2012
, “
Effects of Tapered-Channel Design on Thermal Performance of Microchannel
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1342
1347
.10.1016/j.icheatmasstransfer.2012.08.008
5.
Hung
,
T.-C.
, and
Yan
,
W.-M.
,
2012
, “
Optimization of a Microchannel Heat Sink With Varying Channel Heights and Widths
,”
Numer. Heat Transfer Part A Appl.
,
62
(
9
), pp.
722
741
.10.1080/10407782.2012.709437
6.
Dehghan
,
M.
,
Daneshipour
,
M.
,
Valipour
,
M. S.
,
Rafee
,
R.
, and
Saedodin
,
S.
,
2015
, “
Enhancing Heat Transfer in Microchannel Heat Sinks Using Converging Flow Passages
,”
Energy Convers. Manage.
,
92
, pp.
244
250
.10.1016/j.enconman.2014.12.063
7.
Dehghan
,
M.
,
Vajedi
,
H.
,
Daneshipour
,
M.
,
Pourrajabian
,
A.
,
Rahgozar
,
S.
, and
Ilis
,
G. G.
,
2020
, “
Pumping Power and Heat Transfer Rate of Converging Microchannel Heat Sinks: Errors Associated With the Temperature Dependency of Nanofluids
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1267
1275
.10.1007/s10973-019-09020-y
8.
Osanloo
,
B.
,
Mohammadi-Ahmar
,
A.
,
Solati
,
A.
, and
Baghani
,
M.
,
2016
, “
Performance Enhancement of the Double-Layered Micro-Channel Heat Sink by Use of Tapered Channels
,”
Appl. Therm. Eng.
,
102
, pp.
1345
1354
.10.1016/j.applthermaleng.2016.04.073
9.
Hwang
,
L. K.
,
Kwon
,
B.
, and
Wong
,
M. D.
,
2019
, “
Optimization of Liquid Cooling Microchannel in 3D IC Using Complete Converging and Diverging Channel Models
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1197
1203
.10.1109/ITHERM.2019.8757254
10.
Pandey
,
J.
,
Ansari
,
M. Z.
,
Husain
,
A.
, and
Ansari
,
M. A.
,
2019
, “
Comparative Study of Flow Characteristics in Uniformly Varying Microchannel for DI Water and Nanofluid
,”
AIP Conference Proceedings 2105
, May 13, p.
020016
.10.1063/1.5100701
11.
Alugoju
,
U. K.
,
Dubey
,
S. K.
, and
Javed
,
A.
,
2020
, “
Optimization of Converging and Diverging Microchannel Heat Sink for Electronic Chip Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
5
), pp.
817
827
.10.1109/TCPMT.2020.2985402
12.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
53
67
.10.1007/s10404-012-1022-7
13.
Duryodhan
,
V. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2015
, “
Convective Heat Transfer in Diverging and Converging Microchannels
,”
Int. J. Heat Mass Transfer
,
80
, pp.
424
438
.10.1016/j.ijheatmasstransfer.2014.09.042
14.
Cheng
,
K. X.
,
Chong
,
Y. S.
, and
Ooi
,
K. T.
,
2018
, “
Thermal-Hydraulic Performance of a Tapered Microchannel
,”
Int. Commun. Heat Mass Transfer
,
94
, pp.
53
60
.10.1016/j.icheatmasstransfer.2018.03.008
15.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
6
), p.
061401
.10.1115/1.4023574
16.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2014
, “
Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
5
), p.
051502
.10.1115/1.4026306
17.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.10.1016/j.ijheatmasstransfer.2014.11.080
18.
Recinella
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Enhanced Flow Boiling Using Radial Open Microchannels With Manifold and Offset Strip Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
021502
.10.1115/1.4037644
19.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library
,”
CoolProp. Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
21.
Pritchard
,
P. J.
, and
Mitchell
,
J. W.
,
2016
,
Fox and McDonald's Introduction to Fluid Mechanics
,
Wiley
, New York.
22.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
23.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
101701
.10.1115/1.4006844
You do not currently have access to this content.