Abstract

Ethylene oxide production inside a coated wall microreactor is simulated using computational fluid dynamics. This work considers two parallel plates microreactor filled with different cross-sectional shapes network spacers. The Reynolds numbers in this study ranged from 200 to 800. The spacers' cross-sectional shapes are circular, square, and triangular. The results show that using spacers inside the two parallel plates microreactor is effective at Reynolds number higher than 600. The results show that the triangular spacer with α = 45 deg is the best performance among other spacers at a high Reynolds number, increasing 50% in the reactor performance.

References

1.
Dixon
,
A. G.
,
2021
, “
Local Transport and Reaction Rates in a Fixed Bed Reactor Tube: Exothermic Partial Oxidation of Ethylene
,”
Chem. Eng. Sci.
,
231
, p.
116305
.10.1016/j.ces.2020.116305
2.
Partopour
,
B.
, and
Dixon
,
A. G.
,
2019
, “
Integrated Multiscale Modeling of Fixed Bed Reactors: Studying the Reactor Under Dynamic Reaction Conditions
,”
Chem. Eng. J.
,
377
, p.
119738
.10.1016/j.cej.2018.08.124
3.
Gleaves
,
J. T.
,
Sault
,
A. G.
,
Madix
,
R. J.
, and
Ebner
,
J. R.
,
1990
, “
Ethylene Oxidation on Silver Powder: A TAP Reactor Study
,”
J. Catal.
,
121
(
1
), pp.
202
218
.10.1016/0021-9517(90)90230-H
4.
Heinrich
,
S.
,
Edeling
,
F.
,
Liebner
,
C.
,
Hieronymus
,
H.
,
Lange
,
T.
, and
Klemm
,
E.
,
2012
, “
Catalyst as Ignition Source of an Explosion Inside a Microreactor
,”
Chem. Eng. Sci.
,
84
, pp.
540
543
.10.1016/j.ces.2012.08.049
5.
Salmi
,
T.
,
Carucci
,
J. H.
,
Roche
,
M.
,
Eränen
,
K.
,
Wärnå
,
J.
, and
Murzin
,
D.
,
2013
, “
Microreactors as Tools in Kinetic Investigations: Ethylene Oxide Formation on Silver Catalyst
,”
Chem. Eng. Sci.
,
87
, pp.
306
314
.10.1016/j.ces.2012.10.016
6.
Russo
,
V.
,
Kilpiö
,
T.
,
Carucci
,
J. H.
,
Di Serio
,
M.
, and
Salmi
,
T.
,
2015
, “
Modeling of Microreactors for Ethylene Epoxidation and Total Oxidation
,”
Chem. Eng. Sci.
,
134
, pp.
563
571
.10.1016/j.ces.2015.05.019
7.
Bac
,
S.
, and
Avci
,
A. K.
,
2019
, “
Ethylene Oxide Synthesis in a Wall-Coated Microchannel Reactor With Integrated Cooling
,”
Chem. Eng. J.
,
377
, p.
120104
.10.1016/j.cej.2018.10.041
8.
Carucci
,
J. R. H.
,
Halonen
,
V.
,
Eränen
,
K.
,
Wärnå
,
J.
,
Ojala
,
S.
,
Huuhtanen
,
M.
,
Keiski
,
R.
, and
Salmi
,
T.
,
2010
, “
Ethylene Oxide Formation in a Microreactor: From Qualitative Kinetics to Detailed Modeling
,”
Ind. Eng. Chem. Res.
,
49
(
21
), pp.
10897
10907
.10.1021/ie100521j
9.
Alkhamis
,
N.
, and
Alhazmy
,
M.
,
2021
, “
Improving Ethylene Oxide Production Inside Microreactor by Using Ribbed Wall
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105212
.10.1016/j.icheatmasstransfer.2021.105212
10.
Karim
,
A.
,
Kim
,
Y. J.
, and
Kim
,
J.-H.
,
2021
, “
Two-Dimensional Flow Boiling Characteristics With Wettability Surface in Microgap Heat Sink and Heat Transfer Prediction Using Artificial Neural Network
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
091601
.10.1115/1.4051602
11.
Ren
,
K.
,
Miao
,
Z.
,
Yang
,
B.
,
Yang
,
T.
, and
Yuan
,
W.
,
2020
, “
Flow Boiling in a Parallel Strip Fin Heat Sink With Nonuniform Heat Flux Conditions
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
121601
.10.1115/1.4048095
12.
Simsek
,
H.
,
2022
, “
Evaluation of Nusselt Number for a Flow in a Parallel Plates Using Magnetohydrodynamics Second-Order Slip Model
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
5
), p.
052101
.10.1115/1.4053370
13.
Hong
,
C.
,
Asako
,
Y.
,
Faghri
,
M.
, and
Ueno
,
I.
,
2022
, “
Heat Transfer of Turbulent Gaseous Flow in Microtubes With Constant Wall Temperature
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
4
), p.
042501
.10.1115/1.4053215
14.
Hu
,
Y.
,
Hossen
,
M. O.
,
Wan
,
Z.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2021
, “
Compact Transient Thermal Model of Microfluidically Cooled Three-Dimensional Stacked Chips With Pin-Fin Enhanced Microgap
,”
ASME J. Electron Packag.
,
143
(
3
), p.
031007
.10.1115/1.4049814
15.
Qamar
,
A.
,
Bucs
,
S.
,
Picioreanu
,
C.
,
Vrouwenvelder
,
J.
, and
Ghaffour
,
N.
,
2019
, “
Hydrodynamic Flow Transition Dynamics in a Spacer Filled Filtration Channel Using Direct Numerical Simulation
,”
J. Membr. Sci.
,
590
, p.
117264
.10.1016/j.memsci.2019.117264
16.
Abdelbaky
,
M. M. A.
, and
El-Refaee
,
M. M.
,
2019
, “
A 3D CFD Comparative Study Between Torsioned and Non-Torsioned Net-Type Feed Spacer in Reverse Osmosis
,”
SN Appl. Sci.
,
1
(
9
), pp.
1
19
.10.1007/s42452-019-1098-8
17.
Anqi
,
A. E.
,
Alkhamis
,
N.
, and
Oztekin
,
A.
,
2016
, “
Steady Three Dimensional Flow and Mass Transfer Analyses for Brackish Water Desalination by Reverse Osmosis Membranes
,”
Int. J. Heat Mass Transfer
,
101
, pp.
399
411
.10.1016/j.ijheatmasstransfer.2016.05.102
18.
Anqi
,
A. E.
,
Usta
,
M.
,
Krysko
,
R.
,
Lee
,
J.-G.
,
Ghaffour
,
N.
, and
Oztekin
,
A.
,
2020
, “
Numerical Study of Desalination by Vacuum Membrane Distillation–Transient Three-Dimensional Analysis
,”
J. Membr. Sci.
,
596
, p.
117609
.10.1016/j.memsci.2019.117609
19.
Kavianipour
,
O.
,
Ingram
,
G. D.
, and
Vuthaluru
,
H. B.
,
2017
, “
Investigation Into the Effectiveness of Feed Spacer Configurations for Reverse Osmosis Membrane Modules Using Computational Fluid Dynamics
,”
J. Membr. Sci.
,
526
, pp.
156
171
.10.1016/j.memsci.2016.12.034
20.
Wei
,
W.
,
Zou
,
X.
,
Ji
,
X.
,
Zhou
,
R.
,
Zhao
,
K.
, and
Wang
,
Y.
,
2021
, “
Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics
,”
Membranes
,
11
(
5
), p.
353
.10.3390/membranes11050353
21.
Picioreanu
,
C.
,
Vrouwenvelder
,
J.
, and
Van Loosdrecht
,
M.
,
2009
, “
Three-Dimensional Modeling of Biofouling and Fluid Dynamics in Feed Spacer Channels of Membrane Devices
,”
J. Membr. Sci.
,
345
(
1–2
), pp.
340
354
.10.1016/j.memsci.2009.09.024
22.
Lin
,
W.-c.
,
Shao
,
R.-p.
,
Wang
,
X.-M.
, and
Huang
,
X.
,
2020
, “
Impacts of Non-Uniform Filament Feed Spacers Characteristics on the Hydraulic and Anti-Fouling Performances in the Spacer-Filled Membrane Channels: Experiment and Numerical Simulation
,”
Water Research
,
185
, p.
116251
.10.1016/j.watres.2020.116251
23.
Han
,
Z.
,
Terashima
,
M.
,
Liu
,
B.
, and
Yasui
,
H.
,
2018
, “
CFD Investigation of the Effect of the Feed Spacer on Hydrodynamics in Spiral Wound Membrane Modules
,”
Math. Comput. Appl.
,
23
(
4
), p.
80
.10.3390/mca23040080
24.
Van Dang
,
B.
,
Charlton
,
A. J.
,
Li
,
Q.
,
Kim
,
Y. C.
,
Taylor
,
R. A.
,
Le-Clech
,
P.
, and
Barber
,
T.
,
2021
, “
Can 3D-Printed Spacers Improve Filtration at the Microscale?
,”
Sep. Purif. Technol.
,
256
, p.
117776
.10.1016/j.seppur.2020.117776
25.
El Mokhtar
,
I.
,
Gurreri
,
L.
,
Tamburini
,
A.
,
Cipollina
,
A.
,
Ciofalo
,
M.
,
al Taher Bouguecha
,
S.
, and
Micale
,
G.
,
2021
, “
CFD Prediction of Flow, Heat and Mass Transfer in Woven Spacer-Filled Channels for Membrane Processes
,”
Int. J. Heat Mass Transfer
,
173
, p.
121246
.10.1016/j.ijheatmasstransfer.2021.121246
26.
Alshwairekh
,
A. M.
,
Alghafis
,
A. A.
,
Alwatban
,
A. M.
,
Alqsair
,
U. F.
, and
Oztekin
,
A.
,
2019
, “
The Effect of Mixing Promoters on the Performance of Forward Osmosis Membrane Systems: Computational Fluid Dynamics Simulations
,”
ASME
Paper No. AJKFluid2019-4862.10.1115/AJKFluids2019-4862
27.
Alqsair
,
U. F.
,
Alwatban
,
A. M.
,
Alshwairekh
,
A. M.
,
Krysko
,
R.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
,
2019
, “
The Effect of Mixing Promotors on Sweeping Gas Membrane Distillation System Performance
,”
ASME
Paper No. IMECE2019-10727.10.1115/IMECE2019-10727
28.
Saeed
,
A.
,
Vuthaluru
,
R.
, and
Vuthaluru
,
H. B.
,
2015
, “
Investigations Into the Effects of Mass Transport and Flow Dynamics of Spacer Filled Membrane Modules Using CFD
,”
Chem. Eng. Res. Des.
,
93
, pp.
79
99
.10.1016/j.cherd.2014.07.002
29.
Koutsou
,
C.
,
Yiantsios
,
S.
, and
Karabelas
,
A.
,
2007
, “
Direct Numerical Simulation of Flow in Spacer-Filled Channels: Effect of Spacer Geometrical Characteristics
,”
J. Membr. Sci.
,
291
(
1–2
), pp.
53
69
.10.1016/j.memsci.2006.12.032
30.
Alwatban
,
A. M.
,
Alshwairekh
,
A. M.
,
Alqsair
,
U. F.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
,
2019
, “
Performance Improvements by Embedded Spacer in Direct Contact Membrane Distillation–Computational Study
,”
Desalination
,
470
, p.
114103
.10.1016/j.desal.2019.114103
31.
Alshwairekh
,
A. M.
,
Alwatban
,
A. M.
,
Alqsair
,
U. F.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
,
2020
, “
Performance Characteristics in Forward Osmosis Desalination Modules Containing Membrane Stiffeners
,”
Desalination Water Treat.
,
195
, pp.
26
39
.10.5004/dwt.2020.25918
32.
Li
,
F.
,
Meindersma
,
W.
,
De Haan
,
A.
, and
Reith
,
T.
,
2002
, “
Optimization of Commercial Net Spacers in Spiral Wound Membrane Modules
,”
J. Membr. Sci.
,
208
(
1–2
), pp.
289
302
.10.1016/S0376-7388(02)00307-1
33.
Anqi
,
A. E.
,
Alkhamis
,
N.
, and
Oztekin
,
A.
,
2016
, “
Computational Study of Desalination by Reverse Osmosis—Three-Dimensional Analyses
,”
Desalination
,
388
, pp.
38
49
.10.1016/j.desal.2016.03.017
34.
Gu
,
B.
,
Adjiman
,
C. S.
, and
Xu
,
X. Y.
,
2017
, “
The Effect of Feed Spacer Geometry on Membrane Performance and Concentration Polarisation Based on 3D CFD Simulations
,”
J. Membr. Sci.
,
527
, pp.
78
91
.10.1016/j.memsci.2016.12.058
35.
Shakaib
,
M.
,
Hasani
,
S.
, and
Mahmood
,
M.
,
2007
, “
Study on the Effects of Spacer Geometry in Membrane Feed Channels Using Three-Dimensional Computational Flow Modeling
,”
J. Membr. Sci.
,
297
(
1–2
), pp.
74
89
.10.1016/j.memsci.2007.03.010
36.
Zhang
,
W.
, and
Su
,
X.
,
2021
, “
Effects of Stagnating and Thermal Shielding of an Upstream Promoter on Forced Convection of Flow Past a Square Cylinder in a Channel
,”
Numer. Heat Transfer, Part A Appl.
,
80
(
1–2
), pp.
1
21
.10.1080/10407782.2021.1930760
37.
Alkhamis
,
N.
,
Oztekin
,
D. E.
,
Anqi
,
A. E.
,
Alsaiari
,
A.
, and
Oztekin
,
A.
,
2015
, “
Numerical Study of Gas Separation Using a Membrane
,”
Int. J. Heat Mass Transfer
,
80
, pp.
835
843
.10.1016/j.ijheatmasstransfer.2014.09.072
38.
Prasad
,
K.
,
Paramane
,
S. B.
,
Agrawal
,
A.
, and
Sharma
,
A.
,
2011
, “
Effect of Channel-Confinement and Rotation on the Two-Dimensional Laminar Flow and Heat Transfer Across a Cylinder
,”
Numer. Heat Transfer, Part A Appl.
,
60
(
8
), pp.
699
726
.10.1080/10407782.2011.616843
39.
Turki
,
S.
,
Abbassi
,
H.
, and
Ben Nasrallah
,
S.
,
2003
, “
Two-Dimensional Laminar Fluid Flow and Heat Transfer in a Channel With a Built-in Heated Square Cylinder
,”
Int. J. Therm. Sci.
,
42
(
12
), pp.
1105
1113
.10.1016/S1290-0729(03)00091-7
40.
Fimbres-Weihs
,
G.
,
Wiley
,
D.
, and
Fletcher
,
D. F.
,
2006
, “
Unsteady Flows With Mass Transfer in Narrow Zigzag Spacer-Filled Channels: A Numerical Study
,”
Ind. Eng. Chem. Res.
,
45
(
19
), pp.
6594
6603
.10.1021/ie060243l
41.
Ranade
,
V. V.
, and
Kumar
,
A.
,
2006
, “
Fluid Dynamics of Spacer Filled Rectangular and Curvilinear Channels
,”
J. Membr. Sci.
,
271
(
1–2
), pp.
1
15
.10.1016/j.memsci.2005.07.013
42.
Schwinge
,
J.
,
Wiley
,
D.
, and
Fletcher
,
D.
,
2002
, “
A CFD Study of Unsteady Flow in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules
,”
Desalination
,
146
(
1–3
), pp.
195
201
.10.1016/S0011-9164(02)00470-8
43.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
44.
Borman
,
P. C.
, and
Westerterp
,
K. R.
,
1995
, “
An Experimental Study of the Kinetics of the Selective Oxidation of Ethene Over a Silver on Alpha-Alumina Catalyst
,”
Ind. Eng. Chem. Res.
,
34
(
1
), pp.
49
58
.10.1021/ie00040a002
45.
Chakraborty
,
J.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2004
, “
Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study
,”
Chem. Eng. Process. Process Intensif.
,
43
(
12
), pp.
1529
1537
.10.1016/j.cep.2004.02.004
46.
Chandra
,
P.
,
Alexander
,
C.
, and
Han
,
J.
,
2003
, “
Heat Transfer and Friction Behaviors in Rectangular Channels With Varying Number of Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
481
495
.10.1016/S0017-9310(02)00297-1
47.
Han
,
J.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
You do not currently have access to this content.