Abstract
Ethylene oxide production inside a coated wall microreactor is simulated using computational fluid dynamics. This work considers two parallel plates microreactor filled with different cross-sectional shapes network spacers. The Reynolds numbers in this study ranged from 200 to 800. The spacers' cross-sectional shapes are circular, square, and triangular. The results show that using spacers inside the two parallel plates microreactor is effective at Reynolds number higher than 600. The results show that the triangular spacer with α = 45 deg is the best performance among other spacers at a high Reynolds number, increasing 50% in the reactor performance.
Issue Section:
Micro/Nanoscale Heat Transfer
References
1.
Dixon
,
A. G.
, 2021
, “
Local Transport and Reaction Rates in a Fixed Bed Reactor Tube: Exothermic Partial Oxidation of Ethylene
,” Chem. Eng. Sci.
,
231
, p. 116305
.10.1016/j.ces.2020.1163052.
Partopour
,
B.
, and
Dixon
,
A. G.
, 2019
, “
Integrated Multiscale Modeling of Fixed Bed Reactors: Studying the Reactor Under Dynamic Reaction Conditions
,” Chem. Eng. J.
,
377
, p. 119738
.10.1016/j.cej.2018.08.1243.
Gleaves
,
J. T.
,
Sault
,
A. G.
,
Madix
,
R. J.
, and
Ebner
,
J. R.
, 1990
, “
Ethylene Oxidation on Silver Powder: A TAP Reactor Study
,” J. Catal.
,
121
(1
), pp. 202
–218
.10.1016/0021-9517(90)90230-H4.
Heinrich
,
S.
,
Edeling
,
F.
,
Liebner
,
C.
,
Hieronymus
,
H.
,
Lange
,
T.
, and
Klemm
,
E.
, 2012
, “
Catalyst as Ignition Source of an Explosion Inside a Microreactor
,” Chem. Eng. Sci.
,
84
, pp. 540
–543
.10.1016/j.ces.2012.08.0495.
Salmi
,
T.
,
Carucci
,
J. H.
,
Roche
,
M.
,
Eränen
,
K.
,
Wärnå
,
J.
, and
Murzin
,
D.
, 2013
, “
Microreactors as Tools in Kinetic Investigations: Ethylene Oxide Formation on Silver Catalyst
,” Chem. Eng. Sci.
,
87
, pp. 306
–314
.10.1016/j.ces.2012.10.0166.
Russo
,
V.
,
Kilpiö
,
T.
,
Carucci
,
J. H.
,
Di Serio
,
M.
, and
Salmi
,
T.
, 2015
, “
Modeling of Microreactors for Ethylene Epoxidation and Total Oxidation
,” Chem. Eng. Sci.
,
134
, pp. 563
–571
.10.1016/j.ces.2015.05.0197.
Bac
,
S.
, and
Avci
,
A. K.
, 2019
, “
Ethylene Oxide Synthesis in a Wall-Coated Microchannel Reactor With Integrated Cooling
,” Chem. Eng. J.
,
377
, p. 120104
.10.1016/j.cej.2018.10.0418.
Carucci
,
J. R. H.
,
Halonen
,
V.
,
Eränen
,
K.
,
Wärnå
,
J.
,
Ojala
,
S.
,
Huuhtanen
,
M.
,
Keiski
,
R.
, and
Salmi
,
T.
, 2010
, “
Ethylene Oxide Formation in a Microreactor: From Qualitative Kinetics to Detailed Modeling
,” Ind. Eng. Chem. Res.
,
49
(21
), pp. 10897
–10907
.10.1021/ie100521j9.
Alkhamis
,
N.
, and
Alhazmy
,
M.
, 2021
, “
Improving Ethylene Oxide Production Inside Microreactor by Using Ribbed Wall
,” Int. Commun. Heat Mass Transfer
,
123
, p. 105212
.10.1016/j.icheatmasstransfer.2021.10521210.
Karim
,
A.
,
Kim
,
Y. J.
, and
Kim
,
J.-H.
, 2021
, “
Two-Dimensional Flow Boiling Characteristics With Wettability Surface in Microgap Heat Sink and Heat Transfer Prediction Using Artificial Neural Network
,” ASME J. Heat Transfer-Trans. ASME
,
143
(9
), p. 091601
.10.1115/1.405160211.
Ren
,
K.
,
Miao
,
Z.
,
Yang
,
B.
,
Yang
,
T.
, and
Yuan
,
W.
, 2020
, “
Flow Boiling in a Parallel Strip Fin Heat Sink With Nonuniform Heat Flux Conditions
,” ASME J. Heat Transfer-Trans. ASME
,
142
(12
), p. 121601
.10.1115/1.404809512.
Simsek
,
H.
, 2022
, “
Evaluation of Nusselt Number for a Flow in a Parallel Plates Using Magnetohydrodynamics Second-Order Slip Model
,” ASME J. Heat Transfer-Trans. ASME
,
144
(5
), p. 052101
.10.1115/1.405337013.
Hong
,
C.
,
Asako
,
Y.
,
Faghri
,
M.
, and
Ueno
,
I.
, 2022
, “
Heat Transfer of Turbulent Gaseous Flow in Microtubes With Constant Wall Temperature
,” ASME J. Heat Transfer-Trans. ASME
,
144
(4
), p. 042501
.10.1115/1.405321514.
Hu
,
Y.
,
Hossen
,
M. O.
,
Wan
,
Z.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
, 2021
, “
Compact Transient Thermal Model of Microfluidically Cooled Three-Dimensional Stacked Chips With Pin-Fin Enhanced Microgap
,” ASME J. Electron Packag.
,
143
(3
), p. 031007
.10.1115/1.404981415.
Qamar
,
A.
,
Bucs
,
S.
,
Picioreanu
,
C.
,
Vrouwenvelder
,
J.
, and
Ghaffour
,
N.
, 2019
, “
Hydrodynamic Flow Transition Dynamics in a Spacer Filled Filtration Channel Using Direct Numerical Simulation
,” J. Membr. Sci.
,
590
, p. 117264
.10.1016/j.memsci.2019.11726416.
Abdelbaky
,
M. M. A.
, and
El-Refaee
,
M. M.
, 2019
, “
A 3D CFD Comparative Study Between Torsioned and Non-Torsioned Net-Type Feed Spacer in Reverse Osmosis
,” SN Appl. Sci.
,
1
(9
), pp. 1
–19
.10.1007/s42452-019-1098-817.
Anqi
,
A. E.
,
Alkhamis
,
N.
, and
Oztekin
,
A.
, 2016
, “
Steady Three Dimensional Flow and Mass Transfer Analyses for Brackish Water Desalination by Reverse Osmosis Membranes
,” Int. J. Heat Mass Transfer
,
101
, pp. 399
–411
.10.1016/j.ijheatmasstransfer.2016.05.10218.
Anqi
,
A. E.
,
Usta
,
M.
,
Krysko
,
R.
,
Lee
,
J.-G.
,
Ghaffour
,
N.
, and
Oztekin
,
A.
, 2020
, “
Numerical Study of Desalination by Vacuum Membrane Distillation–Transient Three-Dimensional Analysis
,” J. Membr. Sci.
,
596
, p. 117609
.10.1016/j.memsci.2019.11760919.
Kavianipour
,
O.
,
Ingram
,
G. D.
, and
Vuthaluru
,
H. B.
, 2017
, “
Investigation Into the Effectiveness of Feed Spacer Configurations for Reverse Osmosis Membrane Modules Using Computational Fluid Dynamics
,” J. Membr. Sci.
,
526
, pp. 156
–171
.10.1016/j.memsci.2016.12.03420.
Wei
,
W.
,
Zou
,
X.
,
Ji
,
X.
,
Zhou
,
R.
,
Zhao
,
K.
, and
Wang
,
Y.
, 2021
, “
Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics
,” Membranes
,
11
(5
), p. 353
.10.3390/membranes1105035321.
Picioreanu
,
C.
,
Vrouwenvelder
,
J.
, and
Van Loosdrecht
,
M.
, 2009
, “
Three-Dimensional Modeling of Biofouling and Fluid Dynamics in Feed Spacer Channels of Membrane Devices
,” J. Membr. Sci.
,
345
(1–2
), pp. 340
–354
.10.1016/j.memsci.2009.09.02422.
Lin
,
W.-c.
,
Shao
,
R.-p.
,
Wang
,
X.-M.
, and
Huang
,
X.
, 2020
, “
Impacts of Non-Uniform Filament Feed Spacers Characteristics on the Hydraulic and Anti-Fouling Performances in the Spacer-Filled Membrane Channels: Experiment and Numerical Simulation
,” Water Research
,
185
, p. 116251
.10.1016/j.watres.2020.11625123.
Han
,
Z.
,
Terashima
,
M.
,
Liu
,
B.
, and
Yasui
,
H.
, 2018
, “
CFD Investigation of the Effect of the Feed Spacer on Hydrodynamics in Spiral Wound Membrane Modules
,” Math. Comput. Appl.
,
23
(4
), p. 80
.10.3390/mca2304008024.
Van Dang
,
B.
,
Charlton
,
A. J.
,
Li
,
Q.
,
Kim
,
Y. C.
,
Taylor
,
R. A.
,
Le-Clech
,
P.
, and
Barber
,
T.
, 2021
, “
Can 3D-Printed Spacers Improve Filtration at the Microscale?
,” Sep. Purif. Technol.
,
256
, p. 117776
.10.1016/j.seppur.2020.11777625.
El Mokhtar
,
I.
,
Gurreri
,
L.
,
Tamburini
,
A.
,
Cipollina
,
A.
,
Ciofalo
,
M.
,
al Taher Bouguecha
,
S.
, and
Micale
,
G.
, 2021
, “
CFD Prediction of Flow, Heat and Mass Transfer in Woven Spacer-Filled Channels for Membrane Processes
,” Int. J. Heat Mass Transfer
,
173
, p. 121246
.10.1016/j.ijheatmasstransfer.2021.12124626.
Alshwairekh
,
A. M.
,
Alghafis
,
A. A.
,
Alwatban
,
A. M.
,
Alqsair
,
U. F.
, and
Oztekin
,
A.
, 2019
, “
The Effect of Mixing Promoters on the Performance of Forward Osmosis Membrane Systems: Computational Fluid Dynamics Simulations
,” ASME
Paper No. AJKFluid2019-4862.10.1115/AJKFluids2019-486227.
Alqsair
,
U. F.
,
Alwatban
,
A. M.
,
Alshwairekh
,
A. M.
,
Krysko
,
R.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
, 2019
, “
The Effect of Mixing Promotors on Sweeping Gas Membrane Distillation System Performance
,” ASME
Paper No. IMECE2019-10727.10.1115/IMECE2019-1072728.
Saeed
,
A.
,
Vuthaluru
,
R.
, and
Vuthaluru
,
H. B.
, 2015
, “
Investigations Into the Effects of Mass Transport and Flow Dynamics of Spacer Filled Membrane Modules Using CFD
,” Chem. Eng. Res. Des.
,
93
, pp. 79
–99
.10.1016/j.cherd.2014.07.00229.
Koutsou
,
C.
,
Yiantsios
,
S.
, and
Karabelas
,
A.
, 2007
, “
Direct Numerical Simulation of Flow in Spacer-Filled Channels: Effect of Spacer Geometrical Characteristics
,” J. Membr. Sci.
,
291
(1–2
), pp. 53
–69
.10.1016/j.memsci.2006.12.03230.
Alwatban
,
A. M.
,
Alshwairekh
,
A. M.
,
Alqsair
,
U. F.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
, 2019
, “
Performance Improvements by Embedded Spacer in Direct Contact Membrane Distillation–Computational Study
,” Desalination
,
470
, p. 114103
.10.1016/j.desal.2019.11410331.
Alshwairekh
,
A. M.
,
Alwatban
,
A. M.
,
Alqsair
,
U. F.
,
Alghafis
,
A. A.
, and
Oztekin
,
A.
, 2020
, “
Performance Characteristics in Forward Osmosis Desalination Modules Containing Membrane Stiffeners
,” Desalination Water Treat.
,
195
, pp. 26
–39
.10.5004/dwt.2020.2591832.
Li
,
F.
,
Meindersma
,
W.
,
De Haan
,
A.
, and
Reith
,
T.
, 2002
, “
Optimization of Commercial Net Spacers in Spiral Wound Membrane Modules
,” J. Membr. Sci.
,
208
(1–2
), pp. 289
–302
.10.1016/S0376-7388(02)00307-133.
Anqi
,
A. E.
,
Alkhamis
,
N.
, and
Oztekin
,
A.
, 2016
, “
Computational Study of Desalination by Reverse Osmosis—Three-Dimensional Analyses
,” Desalination
,
388
, pp. 38
–49
.10.1016/j.desal.2016.03.01734.
Gu
,
B.
,
Adjiman
,
C. S.
, and
Xu
,
X. Y.
, 2017
, “
The Effect of Feed Spacer Geometry on Membrane Performance and Concentration Polarisation Based on 3D CFD Simulations
,” J. Membr. Sci.
,
527
, pp. 78
–91
.10.1016/j.memsci.2016.12.05835.
Shakaib
,
M.
,
Hasani
,
S.
, and
Mahmood
,
M.
, 2007
, “
Study on the Effects of Spacer Geometry in Membrane Feed Channels Using Three-Dimensional Computational Flow Modeling
,” J. Membr. Sci.
,
297
(1–2
), pp. 74
–89
.10.1016/j.memsci.2007.03.01036.
Zhang
,
W.
, and
Su
,
X.
, 2021
, “
Effects of Stagnating and Thermal Shielding of an Upstream Promoter on Forced Convection of Flow Past a Square Cylinder in a Channel
,” Numer. Heat Transfer, Part A Appl.
,
80
(1–2
), pp. 1
–21
.10.1080/10407782.2021.193076037.
Alkhamis
,
N.
,
Oztekin
,
D. E.
,
Anqi
,
A. E.
,
Alsaiari
,
A.
, and
Oztekin
,
A.
, 2015
, “
Numerical Study of Gas Separation Using a Membrane
,” Int. J. Heat Mass Transfer
,
80
, pp. 835
–843
.10.1016/j.ijheatmasstransfer.2014.09.07238.
Prasad
,
K.
,
Paramane
,
S. B.
,
Agrawal
,
A.
, and
Sharma
,
A.
, 2011
, “
Effect of Channel-Confinement and Rotation on the Two-Dimensional Laminar Flow and Heat Transfer Across a Cylinder
,” Numer. Heat Transfer, Part A Appl.
,
60
(8
), pp. 699
–726
.10.1080/10407782.2011.61684339.
Turki
,
S.
,
Abbassi
,
H.
, and
Ben Nasrallah
,
S.
, 2003
, “
Two-Dimensional Laminar Fluid Flow and Heat Transfer in a Channel With a Built-in Heated Square Cylinder
,” Int. J. Therm. Sci.
,
42
(12
), pp. 1105
–1113
.10.1016/S1290-0729(03)00091-740.
Fimbres-Weihs
,
G.
,
Wiley
,
D.
, and
Fletcher
,
D. F.
, 2006
, “
Unsteady Flows With Mass Transfer in Narrow Zigzag Spacer-Filled Channels: A Numerical Study
,” Ind. Eng. Chem. Res.
,
45
(19
), pp. 6594
–6603
.10.1021/ie060243l41.
Ranade
,
V. V.
, and
Kumar
,
A.
, 2006
, “
Fluid Dynamics of Spacer Filled Rectangular and Curvilinear Channels
,” J. Membr. Sci.
,
271
(1–2
), pp. 1
–15
.10.1016/j.memsci.2005.07.01342.
Schwinge
,
J.
,
Wiley
,
D.
, and
Fletcher
,
D.
, 2002
, “
A CFD Study of Unsteady Flow in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules
,” Desalination
,
146
(1–3
), pp. 195
–201
.10.1016/S0011-9164(02)00470-843.
Menter
,
F. R.
, 1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,” AIAA J.
,
32
(8
), pp. 1598
–1605
.10.2514/3.1214944.
Borman
,
P. C.
, and
Westerterp
,
K. R.
, 1995
, “
An Experimental Study of the Kinetics of the Selective Oxidation of Ethene Over a Silver on Alpha-Alumina Catalyst
,” Ind. Eng. Chem. Res.
,
34
(1
), pp. 49
–58
.10.1021/ie00040a00245.
Chakraborty
,
J.
,
Verma
,
N.
, and
Chhabra
,
R. P.
, 2004
, “
Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study
,” Chem. Eng. Process. Process Intensif.
,
43
(12
), pp. 1529
–1537
.10.1016/j.cep.2004.02.00446.
Chandra
,
P.
,
Alexander
,
C.
, and
Han
,
J.
, 2003
, “
Heat Transfer and Friction Behaviors in Rectangular Channels With Varying Number of Ribbed Walls
,” Int. J. Heat Mass Transfer
,
46
(3
), pp. 481
–495
.10.1016/S0017-9310(02)00297-147.
Han
,
J.
, and
Park
,
J. S.
, 1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,” Int. J. Heat Mass Transfer
,
31
(1
), pp. 183
–195
.10.1016/0017-9310(88)90235-9Copyright © 2022 by ASME
You do not currently have access to this content.