Abstract

An analysis of natural convection in horizontal slots has been carried out. It is demonstrated that a proper combination of heating and groove patterns can create a net horizontal fluid movement, which we refer to as the horizontal chimney effect. Groove shapes that can be easily manufactured as well as heating patterns that can be easily created using heating wires were considered. It has been shown that both patterns must be properly tuned. The direction of the net horizontal flow can be changed by changing the relative positions of the patterns. Changes of groove geometry can change the flow rate by up to 100%. Simultaneous use of grooves and heating at both plates can nearly double the system effectiveness. The strength of the flow increases with reduction of the Prandtl number.

References

1.
Wong
,
N. H.
, and
Heryanto
,
S.
,
2004
, “
The Study of Active Stack Effect to Enhance Natural Ventilation Using Wind Tunnel and Computational Fluid Dynamics (CFD) Simulations
,”
Energy Build.
,
36
(
7
), pp.
668
678
.10.1016/j.enbuild.2004.01.013
2.
Mortensen
,
D. K.
,
Walker
,
I. S.
, and
Sherman
,
M.
,
2011
, “
Energy and Air Quality Implications of Passive Stack Ventilation in Residential Buildings
,” Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-4589E.
3.
Naylor
,
D.
,
Floryan
,
J. M.
, and
Tarasuk
,
J. D.
,
1991
, “
A Numerical Study of Developing Free Convection Between Isothermal Vertical Plates
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
620
626
.10.1115/1.2910610
4.
Straatman
,
A. G.
,
Tarasuk
,
J. D.
, and
Floryan
,
J. M.
,
1993
, “
Heat Transfer Enhancement From a Vertical, Isothermal Channel Generated by the Chimney Effect
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
2
), pp.
395
402
.10.1115/1.2910691
5.
Straatman
,
A. G.
,
Naylor
,
D.
,
Tarasuk
,
J. D.
, and
Floryan
,
J. M.
,
1994
, “
Free Convection Between Inclined Isothermal Plates
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
1
), pp.
243
245
.10.1115/1.2910866
6.
Novak
,
M.
, and
Floryan
,
J. M.
,
1995
, “
Free Convection in Systems of Vertical Channels
,”
Int. J. Heat Fluid Flow
,
16
(
4
), pp.
244
253
.10.1016/0142-727X(95)97402-E
7.
Shahin
,
G. A.
, and
Floryan
,
J. M.
,
1999
, “
Heat Transfer Enhancement Generated by Chimney Effect in Systems of Vertical Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
1
), pp.
230
232
.10.1115/1.2825955
8.
Andreozzi
,
A.
,
Buonomo
,
B.
, and
Manca
,
O.
,
2005
, “
Numerical Study of Natural Convection in Vertical Channels With Adiabatic Extensions Downstream
,”
Numer. Heat Transfer, Part A Appl.
,
47
(
8
), pp.
741
762
.10.1080/10407780590916904
9.
Mehiris
,
A.
,
Ameziani
,
D.
,
Rahli
,
O.
,
Bouhadef
,
K.
, and
Bennacer
,
R.
,
2017
, “
Active Chimney Effect Using Heated Porous Layers: Optimum Heat Transfer
,”
Eur. Phys. J. Appl. Phys
,
78
(
3
), p.
34807
.10.1051/epjap/2017160398
10.
Song
,
Z.
,
Huang
,
X.
,
Kuenzer
,
C.
,
Zhu
,
H.
,
Jiang
,
J.
,
Pan
,
X.
, and
Zhong
,
F.
,
2020
, “
Chimney Effect Induced by Smoldering Fire in a U-Shaped Porous Channel: A Governing Mechanism of the Persistent Underground Coal Fires
,”
Process Saf. Environ. Prot.
,
136
, pp.
136
147
.10.1016/j.psep.2020.01.029
11.
Putnam
,
J. O.
,
1882
,
The Open Fire for All Ages
,
James R. Osgood and Company
,
Boston, MA
.
12.
Goodarzi
,
M.
,
D'Orazio
,
A.
,
Keshavarzi
,
A.
,
Mousavi
,
S.
, and
Karimipour
,
A.
,
2018
, “
Develop the Nano Scale Method of Lattice Boltzmann to Predict the Fluid Flow and Heat Transfer of Air in the Inclined Lid Driven Cavity With a Large Heat Source Inside, Two Case Studies: Pure Natural Convection and Mixed Convection
,”
Phys. A Stat. Mech. Appl.
,
509
, pp.
210
233
.10.1016/j.physa.2018.06.013
13.
Dash
,
S. M.
,
Lee
,
S. T.
, and
Huang
,
H.
,
2014
, “
Natural Convection From an Eccentric Square Cylinder Using a Novel Flexible Forcing IB-LBM Method
,”
Numer. Heat Transfer Appl.
,
65
(
6
), pp.
531
555
.10.1080/10407782.2013.836019
14.
Dash
,
S. M.
, and
Lee
,
T. S.
,
2015
, “
Natural Convection in a Square Enclosure With a Square Heat Source at Different Horizontal and Diagonal Eccentricities
,”
Numer. Heat Transfer Appl.
,
68
(
6
), pp.
686
710
.10.1080/10407782.2014.994414
15.
Dash
,
S. M.
, and
Sahoo
,
S.
,
2019
, “
A Study on Natural Convection in a Cold Square Enclosure With Two Vertical Eccentric Square Heat Sources Using IB-LBM Scheme
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051013
.10.1115/1.4042858
16.
Floryan
,
J. M.
, and
Inasawa
,
A.
,
2021
, “
Pattern Interaction Effect
,”
Sci. Rep.
,
11
, p.
14573
.10.1038/s41598-021-93707-6
17.
Abtahi
,
A.
, and
Floryan
,
J. M.
,
2017
, “
Natural Convection and Thermal Drift
,”
J. Fluid Mech.
,
826
, pp.
553
582
.10.1017/jfm.2017.426
18.
Abtahi
,
A.
, and
Floryan
,
J. M.
,
2018
, “
On the Formation of Thermal Drift
,”
Phys. Fluids
,
30
(
4
), p.
043602
.10.1063/1.5022380
19.
Inasawa
,
A.
,
Hara
,
K.
, and
Floryan
,
J. M.
,
2021
, “
Experiments on Thermal Drift
,”
Phys. Fluids
,
33
(
8
), p.
087116
.10.1063/5.0059134
20.
Abtahi
,
A.
, and
Floryan
,
J. M.
,
2017
, “
Convective Heat Transfer in Non-Uniformly Heated Corrugated Slots
,”
Phys. Fluids
,
29
(
10
), p.
103605
.10.1063/1.4989686
21.
Bénard
,
H.
,
1900
, “
Les Tourbillons Cellulaires Dans Une Nappe Liquide
,”
Rev. Gen. Sci. Pure Appl.
,
11
, pp.
1261
1271
.https://gallica.bnf.fr/ark:/12148/bpt6k17075r/f1330.item.r=benard
22.
Rayleigh
,
J.
,
1916
, “
On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side
,”
Philos. Mag.
,
32
(
192
), pp.
529
546
.10.1080/14786441608635602
23.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2013
, “
Instabilities of Natural Convection in a Periodically Heated Layer
,”
J. Fluid Mech.
,
733
, pp.
33
67
.10.1017/jfm.2013.432
24.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2014
, “
Natural Convection in a Fluid Layer Periodically Heated From Above
,”
Phys. Rev. E
,
90
(
2
), p.
023015
.10.1103/PhysRevE.90.023015
25.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2015
, “
Natural Convection in a Horizontal Fluid Layer Periodically Heated From Above and Below
,”
Phys. Rev. E
,
92
(
2
), p.
023015
.10.1103/PhysRevE.92.023015
26.
Abtahi
,
A.
, and
Floryan
,
J. M.
,
2017
, “
Natural Convection in Corrugated Slots
,”
J. Fluid Mech.
,
815
, pp.
537
569
.10.1017/jfm.2017.73
27.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2015
, “
Mixed Convection in a Periodically Heated Channel
,”
J. Fluid Mech.
,
768
, pp.
51
90
.10.1017/jfm.2015.48
28.
Hossain
,
M. Z.
,
Floryan
,
D.
, and
Floryan
,
J. M.
,
2012
, “
Drag Reduction Due to Spatial Thermal Modulations
,”
J. Fluid Mech.
,
713
, pp.
398
419
.10.1017/jfm.2012.465
29.
Floryan
,
D.
, and
Floryan
,
J. M.
,
2015
, “
Drag Reduction in Heated Channels
,”
J. Fluid Mech.
,
765
, pp.
353
395
.10.1017/jfm.2014.683
30.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2016
, “
Drag Reduction in a Thermally Modulated Channel
,”
J. Fluid Mech.
,
791
, pp.
122
153
.10.1017/jfm.2016.42
31.
Inasawa
,
A.
,
Taneda
,
K.
, and
Floryan
,
J. M.
,
2019
, “
Experiments on Flows in Channels With Spatially Distributed Heating
,”
J. Fluid Mech.
,
872
, pp.
177
197
.10.1017/jfm.2019.332
32.
Floryan
,
J. M.
,
Shadman
,
S.
, and
Hossain
,
M. Z.
,
2018
, “
On the Relative Motion Between Non-Isothermal Plates Heating-Induced Drag Reduction in Relative Movement of Parallel Plates
,”
Phys. Rev. Fluids
,
3
(
9
), p.
094101
.10.1103/PhysRevFluids.3.094101
33.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2020
, “
On the Role of Surface Grooves in the Reduction of Pressure Losses in Heated Channels
,”
Phys. Fluids
,
32
(
8
), p.
083610
.10.1063/5.0018416
34.
Floryan
,
J. M.
,
1985
, “
Conformal-Mapping-Based Coordinate Generation Method for Channel Flows
,”
J. Comp. Phys.
,
58
(
2
), pp.
229
245
.10.1016/0021-9991(85)90178-0
35.
Floryan
,
J. M.
,
1986
, “
Conformal-Mapping-Based Coordinate Generation for Flows in Periodic Configurations
,”
J. Comp. Phys.
,
62
(
1
), pp.
221
247
.10.1016/0021-9991(86)90108-7
36.
Floryan
,
J. M.
, and
Zemach
,
C.
,
1987
, “
Schwarz-Christoffel Transformations—A General Approach
,”
J. Comp. Phys.
,
72
(
2
), pp.
347
371
.10.1016/0021-9991(87)90087-8
37.
Floryan
,
J. M.
, and
Zemach
,
C.
,
1993
, “
Schwarz-Christoffel Methods for Conformal Mappings of Regions With a Periodic Boundary
,”
J. Comp. Appl. Math.
,
46
(
1–2
), pp.
77
102
.10.1016/0377-0427(93)90288-M
38.
Cabal
,
A.
,
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2001
, “
Numerical Simulation of Flows Over Corrugated Walls
,”
Comp. Fluids
,
30
(
6
), pp.
753
776
.10.1016/S0045-7930(00)00028-1
39.
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
1999
, “
A Direct Spectral Method for Determination of Flows Over Corrugated Boundaries
,”
J. Comp. Phys.
,
153
(
2
), pp.
378
402
.10.1006/jcph.1999.6282
40.
Husain
,
S. Z.
, and
Floryan
,
J. M.
,
2010
, “
Spectrally-Accurate Algorithm for Moving Boundary Problems for the Navier-Stokes Equations
,”
J. Comp. Phys.
,
229
(
6
), pp.
2287
2313
.10.1016/j.jcp.2009.11.035
41.
Panday
,
S.
, and
Floryan
,
J. M.
,
2021
, “
An Algorithm for Analysis of Pressure Losses in Heated Channels
,”
Int. J. Num. Methods Fluids
,
93
(
5
), pp.
1332
1358
.10.1002/fld.4931
42.
Abtahi
,
A.
,
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2016
, “
Spectrally Accurate Algorithm for Analysis of Convection in Corrugated Conduits
,”
Comput. Math. Appl.
,
72
(
10
), pp.
2636
2659
.10.1016/j.camwa.2016.09.019
43.
Husain
,
S. Z.
,
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2009
, “
Over-Constrained Formulation of the Immersed Boundary Condition Method
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
1–4
), pp.
94
112
.10.1016/j.cma.2009.09.022
You do not currently have access to this content.