Abstract

In the present paper, numerical study of flow and heat transfer properties of RP-3 kerosene in an impingement model are conducted with SST kω turbulence model and a 10-species surrogate of kerosene. The independence of grids is first studied and the numerical results are compared with experimental data for validation. Characteristics of flow and heat transfer of kerosene flow in the impingement model are studied with different inlet temperatures, dimensionless open areas, and separation distances. The heat transfer coefficients and pressure losses increase with decreasing dimensionless open areas. The separation distance H/d = 2 gets the best heat transfer performance and the separation distance H/d = 3 gets the best heat transfer uniformity on the target plate. Higher inlet temperature gets a higher heat transfer performance and heat transfer uniformity on the target plate.

References

1.
Hendricks
,
R. C.
,
Simoneau
,
R. J.
, and
Smith
,
R. V.
,
1970
, “Survey of heat transfer to near-critical fluids,” NASA Technical Note D-5886.
2.
Bellan
,
J.
,
2000
, “
Supercritical (Subcritical) Fluid Behavior and Modeling: Drops, Streams, Shear and Mixing Layers, and Sprays
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
329
366
.10.1016/S0360-1285(00)00008-3
3.
Yang
,
V.
,
2000
, “
Modeling of Supercritical Vaporization, Mixing and Combustion Processes in Liquid-Fueled Propulsion System
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
925
942
.10.1016/S0082-0784(00)80299-4
4.
Linne
,
D.
,
Meyer
,
M.
,
Edwards
,
T.
,
Eitman
,
D.
,
Linne
,
D.
,
Meyer
,
M.
,
Edwards
,
T.
, and
Eitman
,
D.
,
1997
, “
Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel
,”
AIAA
Paper No. 1997-3041.10.2514/6.1997-3041
5.
Hu
,
Z. H.
,
Chen
,
T. K.
,
Luo
,
Y. S.
, and Zhang, J. X.,
2002
, “
Heat Transfer to Kerosene at Supercritical Pressure in Small-Diameter Tube With Large Heat Flux
,”
J. Chem. Ind. Eng. (China)
,
53
(
2
), pp.
134
138
.http://hgxb.cip.com.cn/EN/Y2002/V53/I2/134
6.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
,
Li
,
J. G.
, and
Sung
,
C. J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
543
550
.10.2514/1.41619
7.
Dang
,
G.
,
Zhong
,
F. Q.
,
Zhang
,
Y. J.
, and
Zhang
,
X. Y.
,
2015
, “
Numerical Study of Heat Transfer Deterioration of Turbulent Supercritical Kerosene Flow in Heated Circular Tube
,”
Int. J. Heat Mass. Transfer
,
85
, pp.
1003
1011
.10.1016/j.ijheatmasstransfer.2015.02.052
8.
Wang
,
X.
,
Zhong
,
F. Q.
,
Chen
,
L. H.
, and
Zhang
,
X. Y.
,
2013
, “
A Coupled Heat Transfer Analysis With Effects of Catalytic Cracking of Kerosene for Actively Cooled Supersonic Combustor
,”
J. Propul. Technol.
,
34
(
1
), pp.
47
53
.10.13675/j.cnki.tjjs.2013.01.011
9.
Buchlin
,
J. M.
,
2003
, “
Convective Heat Transfer in Impinging Gas-Jet Systems
,” (Lecture Series 2000–03), von Karman Institute for Fluid Dynamics,Rhode Saint Genese, Belgium, pp.
1
33
.
10.
Han
,
B.
, and
Goldstein
,
R.
,
2003
, “
Aero-Thermal Performance of Internal Cooling Systems in Turbomachines
,” (Lecture Series 2000–03), von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, pp.
34
57
.
11.
Chambers
,
A.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Mitchell
,
M.
,
2006
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,”
ASME
Paper No. GT2006-91229.10.1115/GT2006-91229
12.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Dailey
,
G.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
J. Turbomach.
,
123
(
1
), pp.
154
160
.10.1115/1.1328087
13.
Xing
,
Y. F.
,
Zhong
,
F. Q.
, and
Zhang
,
X. Y.
,
2018
, “
Numerical Study of Impingement Cooling of Aviation Kerosene at Supercritical Conditions
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
112201
.10.1115/1.4040612
14.
Zu
,
Y. Q.
, and
Yan
,
Y. Y.
,
2009
, “
Numerical Study on Stagnation Point Heat Transfer by Jet Impingement in a Confined Narrow Gap
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
9
), p. 094504.10.1115/1.3139183
15.
Sagot
,
B.
,
Antonini
,
G.
,
Christgen
,
A.
, and
Buron
,
F.
,
2008
, “
Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1610
1619
.10.1016/j.ijthermalsci.2007.10.020
16.
Cheng
,
L.
,
Zhong
,
F.
,
Gu
,
H.
, and
Zhang
,
X.
,
2016
, “
Application of Conjugate Gradient Method for Estimation of the Wall Heat Flux of a Supersonic Combustor
,”
Int. J. Heat Mass. Transfer
,
96
, pp.
249
255
.10.1016/j.ijheatmasstransfer.2016.01.036
17.
“Examining Spatial (Grid) Convergence,” accessed Apr. 12, 2022, www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html
18.
Du
,
M. M.
,
Zhong
,
F. Q.
,
Xing
,
Y. F.
, and
Zhang
,
X. Y.
,
2020
, “
Experimental and Numerical Investigation on Flow and Heat Transfer of Impingement Jet Cooling of Kerosene
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104644
.10.1016/j.icheatmasstransfer.2020.104644
19.
Choo
,
K. S.
,
Youn
,
Y. J.
,
Kim
,
S. J.
, and
Lee
,
D. H.
,
2009
, “
Heat Transfer Characteristics of a Micro-Scale Impinging Slot Jet
,”
Int. J. Heat Mass. Transfer
,
52
(
13–14
), pp.
3169
3175
.10.1016/j.ijheatmasstransfer.2009.02.015
20.
Pence
,
D. V.
,
Boeschoten
,
P. A.
, and
Liburdy
,
J. A.
,
2003
, “
Simulation of Compressible Micro-Scale Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
447
453
.10.1115/1.1571082
You do not currently have access to this content.