Abstract

As an efficient heat and mass transfer technology, falling film evaporation has attracted more and more scholars' attention. In this paper, a falling film evaporation platform was established to discuss the mechanism of two-phase flow in narrow channels. The width of the channel varied from 0.5 to 2.0 mm. We focused on the relationship between heat transfer characteristics with flow patterns, channel width, and pressure loss. Three kinds of flow patterns were observed: bubble flow, restricted bubble flow, and dry area. In channels with the same width, the initial heat flux of subcooled evaporation increased linearly with the growth of flow rate. But at the same flow rate, the initial heat flux of subcooled evaporation decreased when the channel width became larger. The heat transfer coefficient on the wall was influenced by the bubble generation frequency and bubble separation diameter. Higher bubble generation frequency led to smaller bubble separation diameter. Through mathematical analysis, it was found that the heat transfer coefficient changed with the channel size. And a boundary was observed between the strengthening and weakening status. The comparison of theoretical and experimental values showed good agreement.

References

1.
Ribatski
,
G.
, and
Jacobi
,
A. M.
,
2005
, “
Falling-Film Evaporation on Horizontal Tubes-A Critical Review
,”
Int. J. Refrig.
,
28
(
5
), pp.
635
653
.10.1016/j.ijrefrig.2004.12.002
2.
Krupiczka
,
R.
,
Rotkegel
,
A.
, and
Ziobrowski
,
Z.
,
2002
, “
Heat Transfer to Evaporating Liquid Films Within a Vertical Tube
,”
Chem. Eng. Process.
,
41
(
1
), pp.
23
28
.10.1016/S0255-2701(00)00158-6
3.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.10.1016/0017-9310(94)90103-1
4.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.10.1016/0017-9310(93)80041-R
5.
Ishibashi
,
E.
, and
Nishikawa
,
K.
,
1969
, “
Saturated Boiling Heat Transfer in Narrow Spaces
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
863
894
.10.1016/0017-9310(69)90153-7
6.
Candan
,
A.
,
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2018
, “
Saturated Flow Boiling Characteristics in Single Rectangular Mini-Channels: Effect of Aspect Ratio
,”
Exp. Heat Transfer
,
31
(
6
), pp.
531
551
.10.1080/08916152.2018.1463305
7.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Micro Channels: Fundamentals and Applications
,”
Appl. Thermal Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
8.
Wambsganss
,
M. W.
,
France
,
D. M.
,
Jendrzejczyk
,
J. A.
, and
Tran
,
T. N.
,
1993
, “
Boiling Heat Transfer in a Small Diameter Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
963
972
.10.1115/1.2911393
9.
Krishnan
,
R. A.
,
Balasubramanian
,
K. R.
, and
Suresh
,
S.
,
2018
, “
Experimental Investigation of the Effect of Heat Sink Orientation on Sub-Cooled Flow Boiling Performance in a Rectangular Micro Gap Channel
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1341
1357
.10.1016/j.ijheatmasstransfer.2017.12.133
10.
Liu, Z. H., Xiong, J. G., and Bao, R., 2007, “Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-grooved Heating Surface,”
Int. J. Multiphase Flow
, 33(12), pp.
1284
1295
.10.1016/j.ijmultiphaseflow.2007.06.009
11.
Liu
,
Z. H.
,
Yi
,
J.
, and
Wang
,
J.
,
2002
, “
Theoretical Study on Evaporation Heat Transfer Characteristics of Falling Film High-Speed Annular Two-Phase Flow in Vertical Tube
,”
J. Shanghai Jiaotong Univ.
,
36
, pp.
1479
1483
.10.16183/j.cnki.jsjtu.2002.10.023
12.
De
,
J.
, and
Xin
,
M. D.
,
2003
, “
Heat Transfer Performance of Ethanol Three-Dimensional Inner Micro-Fin Heat Pipe
,”
J. Chongqing Univ.
,
26
, pp.
39
41
.10.11835/j.issn.1000-582X.2003.04.030
13.
Wang
,
W. S.
,
Ma
,
Z. Q.
, and
Zhu
,
X. J.
,
2018
, “
Experimental Research on Heat Transfer Characteristics of R113 Falling Film Evaporation in Vertical Tube
,”
Fluid Mach.
,
46
, pp.
55
59
.10.3969/j.issn.1005-0329.2018.06.012
14.
Lin
,
S.
,
Kew
,
P. A.
, and
Cornwell
,
K.
,
2001
, “
Flow Boiling of Refrigerant R141B in Small Tubes
,”
Chem. Eng. Res.Des.
,
79
(
4
), pp.
417
424
.10.1205/026387601750282346
15.
Tullius
,
J. F.
,
Vajtai
,
R.
, and
Bayazitoglu
,
Y.
,
2011
, “
A Review of Cooling in Micro-Channels
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
527
541
.10.1080/01457632.2010.506390
16.
Yen
,
T.-H.
,
Shoji
,
M.
,
Takemura
,
F.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2006
, “
Visualization of Convective Boiling Heat Transfer in Single Micro-Channels With Different Shaped Cross-Sections
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3884
3894
.10.1016/j.ijheatmasstransfer.2005.12.024
17.
Chen
,
D. Q.
,
Pan
,
L. M.
, and
Yuan
,
D. W.
,
2008
, “
Experimental Study on Bubble Growth in Vertical Narrow Channel
,”
Nucl. Power Eng.
,
29
(
5
), pp.
52
55
.https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200805013.htm
18.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
19.
Guo
,
L.
,
Zhang
,
S. S.
, and
Cheng
,
L.
,
2011
, “
Nucleate Boiling in Two Types of Vertical Narrow Channels
,”
Front. Energy
,
5
(
3
), pp.
250
256
.10.1007/s11708-010-0128-4
20.
Talebi
,
S.
,
Abbasi
,
F.
, and
Davilu
,
H.
,
2009
, “
A 2D Numerical Simulation of Sub-Cooled Flow Boiling at Low-Pressure and Low-Flow Rates
,”
Nucl. Eng. Des.
,
239
(
1
), pp.
140
146
.10.1016/j.nucengdes.2008.09.007
21.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2018
, “
Flow Boiling in Mini to Micro Diameter Channels
,”
Encyclopedia of Two Phase Heat Transfer and Flow IV
, 1st ed., Vol.
3
,
J. R.
Thome
, eds.,
Lausanne, Switzerland
:
World Scientific
, pp.
233
301
.
22.
Karmakar
,
A.
, and
Acharya
,
S.
,
2021
, “
Numerical Simulation of Falling Film Flow Hydrodynamics Over Round Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
173
, p.
121175
.10.1016/j.ijheatmasstransfer.2021.121175
23.
Özdemir
,
M. R.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Flow Boiling of Water in a Rectangular Metallic Micro-Channel
,”
Heat Transfer Eng.
,
42
(
6
), pp.
492
516
.10.1080/01457632.2019.1707390
24.
Lin
,
K. T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), pp.
121801
121817
.10.1115/1.4048091
25.
Manoharan
,
S.
,
Deodhar
,
A.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2019
, “
Computational Modeling of Adiabatic Bubble Growth Dynamics From Submerged Capillary-Tube Orifices in Aqueous Solutions of Surfactants
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), pp.
052002
052021
.10.1115/1.4042700
26.
Jakob
,
M.
,
Awbery
,
J. H.
, and
Ingersol
,
L. R.
,
1950
, “
Heat Transfer Volume I and a Textbook on Heat
,”
Phys. Today
,
3
(
6
), pp.
23
24
.10.1063/1.3066903
27.
Choi
,
H.
,
Li
,
C.
, and
Peterson
,
G. P.
,
2021
, “
Dynamic Processes of Nanobubbles: Growth, Collapse, and Coalescence
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), pp.
102501
102524
.10.1115/1.4051323
You do not currently have access to this content.