Abstract

Multistage supercharging is an effective way to solve the problems of low volumetric efficiency and combustion deterioration of piston engines under high altitude conditions. As a critical component of the supercharger system, the high-altitude intercooler performance is challenged to meet the heavy heat load caused by the large boosting ratio. The purpose of this study was to add more knowledge on the high-altitude intercooler performance to the limited existing studies. The intercooler experimental tests were conducted in a high-altitude simulation system, allowing for simultaneous pressure and temperature reductions. A 3D computational fluid dynamics (CFD) model was developed and validated against experimental results to investigate the intercooler performance, including the heat exchange and pressure drop characteristics. The results indicated that the atmospheric conditions and cruising speed significantly affected the intercooler performance. For example, the weighting of the effects of the temperature difference and air density on heat exchange performance varied with altitude. The altitude of 11 km was the turning point of the heat transfer rate because it is the junction of the troposphere and stratosphere. Based on this finding, this study further investigated whether a higher cruise speed could compensate for heat transfer deterioration with increasing altitude, more consistent with actual flight conditions. The simulation results showed that the variation of cruise speed directly affected the effectiveness of the heat exchanger, resulting in a different trend with altitude. Furthermore, the heat exchange of the intercooler fluctuated less with altitude under variable speed conditions. Overall, these findings support more fundamental research on high-altitude intercoolers, which may benefit the design and optimization of high-altitude engines and turbocharged systems.

References

1.
GAMA
,
2022
, “
Annual Data
,” GAMA, Washington, DC, accessed Nov. 28, 2022, https://gama.aero/facts-and-statistics/statistical-databook-and-industry-outlook/annual-data/
2.
Koh
,
W. C.
,
Mazlan
,
N. M.
,
Rajendran
,
P.
, and
Ismail
,
M. A.
,
2018
, “
A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
370
(
1
), p.
012001
.10.1088/1757-899X/370/1/012001
3.
Liu
,
Z.
,
Sun
,
M.
,
Huang
,
Y.
,
Li
,
K.
, and
Wang
,
C.
,
2020
, “
Investigation of Heat Transfer Characteristics of High-Altitude Intercooler for Piston Aero-Engine Based on Multi-Scale Coupling Method
,”
Int. J. Heat Mass Transfer
,
156
, p.
119898
.10.1016/j.ijheatmasstransfer.2020.119898
4.
Soares
,
S. M. C.
, and
Sodré
,
J. R.
,
2002
, “
Effects of Atmospheric Temperature and Pressure on the Performance of a Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
6
), pp.
473
477
.10.1243/09544070260137499
5.
Liu
,
Z.
,
Sun
,
M.
,
Huang
,
Y.
,
Li
,
K.
,
Li
,
Z.
,
Gan
,
B.
, and
Xiao
,
M.
,
2022
, “
Performance of Parallel Plate-Fin Heat Exchanger for Piston Aero-Engines With Front-Placed Guide Plate at High Altitude
,”
Appl. Therm. Eng.
,
214
, p.
118829
.10.1016/j.applthermaleng.2022.118829
6.
Liu
,
Z.
, and Liu, J., 2022, “Investigation of the Effect of Altitude on In-Cylinder Heat Transfer in Heavy-Duty Diesel Engines Based on an Empirical Model,”
ASME J. Energy Resour. Technol.
, 144(11), p. 112303.10.1115/1.4054136
7.
Alkidas
,
A. C.
, and
Myers
,
J. P.
,
1982
, “
Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
1
), pp.
62
67
.10.1115/1.3245069
8.
Bromnick
,
P. A.
,
Pearson
,
R. J.
, and
Winterbone
,
D. E.
,
1998
, “
Intercooler Model for Unsteady Flows in Engine Manifolds
,”
Proc. Inst. Mech. Eng., Part D
,
212
(
2
), pp.
119
132
.10.1243/0954407981525849
9.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Varnier
,
O.
,
2010
, “
Impact of Two-Stage Turbocharging Architectures on Pumping Losses of Automotive Engines Based on an Analytical Model
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1958
1969
.10.1016/j.enconman.2010.02.028
10.
Pan
,
W.
,
Yao
,
C.
,
Han
,
G.
,
Wei
,
H.
, and
Wang
,
Q.
,
2015
, “
The Impact of Intake Air Temperature on Performance and Exhaust Emissions of a Diesel Methanol Dual Fuel Engine
,”
Fuel
,
162
, pp.
101
110
.10.1016/j.fuel.2015.08.073
11.
Liu
,
S.
, and
Zhang
,
Y.
,
2020
, “
Research on the Integrated Intercooler Intake System of Turbocharged Diesel Engine
,”
Int. J. Automotive Technol.
,
21
(
2
), pp.
339
349
.10.1007/s12239-020-0032-9
12.
Hribernik
,
A.
, and
Moskwa
,
J. J.
,
2000
, “
Transient Response of a Cross-Flow Charge Air Intercooler and Its Influence on Engine Operation
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
483
489
.10.1115/1.1286683
13.
Greiner
,
N. J.
,
Polanka
,
M. D.
,
Rutledge
,
J. L.
, and
Shewhart
,
A. T.
,
2016
, “
Effect of Variable Properties and Radiation on Convective Heat Transfer Measurements at Engine Conditions
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p.
112002
.10.1115/1.4033537
14.
Perez
,
P. L.
, and
Boehman
,
A. L.
,
2010
, “
Performance of a Single-Cylinder Diesel Engine Using Oxygen-Enriched Intake Air at Simulated High-Altitude Conditions
,”
Aerosp. Sci. Technol.
,
14
(
2
), pp.
83
94
.10.1016/j.ast.2009.08.001
15.
Wang
,
X.
,
Ge
,
Y.
,
Yu
,
L.
, and
Feng
,
X.
,
2013
, “
Effects of Altitude on the Thermal Efficiency of a Heavy-Duty Diesel Engine
,”
Energy
,
59
, pp.
543
548
.10.1016/j.energy.2013.06.050
16.
Liu
,
R.
,
Zhang
,
Z.
,
Dong
,
S.
, and
Zhou
,
G.
,
2017
, “
High-Altitude Matching Characteristic of Regulated Two-Stage Turbocharger With Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
094501
.10.1115/1.4036283
17.
Kan
,
Z.
,
Hu
,
Z.
,
Lou
,
D.
,
Tan
,
P.
,
Cao
,
Z.
, and
Yang
,
Z.
,
2018
, “
Effects of Altitude on Combustion and Ignition Characteristics of Speed-Up Period During Cold Start in a Diesel Engine
,”
Energy
,
150
, pp.
164
175
.10.1016/j.energy.2017.12.103
18.
Mansouri
,
H.
, and
Ommi
,
F.
,
2019
, “
Performance Prediction of Aircraft Gasoline Turbocharged Engine at High-Altitudes
,”
Appl. Therm. Eng.
,
156
, pp.
587
596
.10.1016/j.applthermaleng.2019.04.116
19.
Katrašnik
,
T.
, and
Trenc
,
F.
,
2012
, “
Innovative Approach to Air Management Strategy for Turbocharged Diesel Aircraft Engines
,”
Proc. Inst. Mech. Eng., Part G
,
226
(
8
), pp.
966
979
.10.1177/0954410011416750
20.
Pan
,
Z.
,
He
,
Q.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Yang
,
J.
,
2013
, “
Research on the Turbocharger Technology of Piston Aircraft Engine
,”
Appl. Mech. Mater.
,
457–458
, pp.
531
535
.10.4028/www.scientific.net/AMM.457-458.531
21.
Fu
,
J.
,
Liu
,
J.
,
Wang
,
Y.
,
Deng
,
B.
,
Yang
,
Y.
,
Feng
,
R.
, and
Yang
,
J.
,
2014
, “
A Comparative Study on Various Turbocharging Approaches Based on IC Engine Exhaust Gas Energy Recovery
,”
Appl. Energy
,
113
, pp.
248
257
.10.1016/j.apenergy.2013.07.023
22.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Effect of Altitude Conditions on Combustion and Performance of a Turbocharged Direct-Injection Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D.
,
236
(
4
), pp.
582
593
.10.1177/09544070211026204
23.
Zhang
,
H.
,
Shi
,
L.
,
Deng
,
K.
,
Liu
,
S.
, and
Yang
,
Z.
,
2020
, “
Experiment Investigation on the Performance and Regulation Rule of Two-Stage Turbocharged Diesel Engine for Various Altitudes Operation
,”
Energy
,
192
, p.
116653
.10.1016/j.energy.2019.116653
24.
Gu
,
Y.
,
Zhu
,
S.
,
Yang
,
M.
,
Zhang
,
H.
,
Deng
,
K.
, and
Yang
,
Z.
,
2020
, “
Analytical Model for Altitude Adaptability of Turbocharged Heavy-Duty Diesel Engine
,”
J. Energy Eng.
,
146
(
4
), p.
04020038
.10.1061/(ASCE)EY.1943-7897.0000662
25.
Szedlmayer
,
M.
, and
Kweon
,
C. B. M.
,
2016
, “
Effect of Altitude Conditions on Combustion and Performance of a Multi-Cylinder Turbocharged Direct-Injection Diesel Engine
,”
SAE
Paper No. 2016-010742. 10.4271/2016-010742
26.
Missirlis
,
D.
,
Donnerhack
,
S.
,
Seite
,
O.
,
Albanakis
,
C.
,
Sideridis
,
A.
,
Yakinthos
,
K.
, and
Goulas
,
A.
,
2010
, “
Numerical Development of a Heat Transfer and Pressure Drop Porosity Model for a Heat Exchanger for Aero Engine Applications
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1341
1350
.10.1016/j.applthermaleng.2010.02.021
27.
Wang
,
Y.
,
Li
,
Y.
,
Yang
,
J.
,
Sun
,
C.
,
Liu
,
K.
, and
Feng
,
R.
,
2017
, “
Effects of Anodic Oxidation for Combustion Chamber on Heat Transfer of the Piston in an Aero-Engine
,”
Exp. Heat Transfer
,
30
(
1
), pp.
46
65
.10.1080/08916152.2015.1135203
28.
Gu
,
L.
,
Min
,
J.
,
Wu
,
X.
, and
Yang
,
L.
,
2017
, “
Airside Heat Transfer and Pressure Loss Characteristics of Bare and Finned Tube Heat Exchangers Used for Aero Engine Cooling Considering Variable Air Properties
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1839
1849
.10.1016/j.ijheatmasstransfer.2017.01.047
29.
Jia
,
R.
,
Wang
,
Y.
,
Guo
,
J.
,
Yu
,
Z.
, and
Kang
,
H.
,
2017
, “
Research on the Heat Transfer and Flow Characteristics of Fin-Tube Exchanger Under Low Pressure Environment
,”
Appl. Therm. Eng.
,
112
, pp.
1163
1171
.10.1016/j.applthermaleng.2016.06.137
30.
Li
,
Y.
,
Wang
,
Y.
,
Wan
,
R.
,
Liu
,
Z.
,
Wu
,
H.
, and
Mei
,
X.
,
2022
, “
Study on the Air-Side Flow and Heat Transfer Characteristics of Corrugated Fin Under Low-Pressure Environment
,”
Exp. Heat Transfer
,
35
(
1
), pp.
62
78
.10.1080/08916152.2020.1818886
31.
Zhang
,
J.
,
Liu
,
J.
,
Zhang
,
L.
,
Liu
,
Q.
, and
Wu
,
Q.
,
2019
, “
Air-Side Heat Transfer Characteristics Under Wet Conditions at Lower Ambient Pressure of Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
142
, p.
118439
.10.1016/j.ijheatmasstransfer.2019.118439
32.
Sabir
,
R.
,
Khan
,
M. M.
, and
Sheikh
,
N. A.
,
2022
, “
Numerical Investigation of Thermal-Hydraulic Performance of u-Tubes Enhanced With Ellipsoidal 45 Deg Dimples
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
8
), p.
082001
.10.1115/1.4054555
33.
Ito
,
Y.
,
Inokura
,
N.
, and
Nagasaki
,
T.
,
2014
, “
Conjugate Heat Transfer in Air-to-Refrigerant Airfoil Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
8
), p.
081703
.10.1115/1.4027554
34.
Wang
,
Q.
,
Qian
,
Z.
,
Cheng
,
J.
,
Ren
,
J.
, and
Huang
,
W.
,
2019
, “
Investigation on Heat Transfer Performance and Flow Resistance Characteristics in Finned-Tube Heat Exchangers With Different Vortex Generator Positions
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
9
), p.
091804
.10.1115/1.4042008
35.
Lin
,
K. T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
121801
.10.1115/1.4048091
36.
Chu
,
P.
,
He
,
Y.
, and
Tao
,
W.
,
2009
, “
Three-Dimensional Numerical Study of Flow and Heat Transfer Enhancement Using Vortex Generators in Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
9
), p.
091903
.10.1115/1.3139185
37.
Yang
,
Y.
,
Li
,
Y.
,
Si
,
B.
, and
Zheng
,
J.
,
2015
, “
Performance Evaluation of Heat Transfer Enhancement for Offset Strip Fins Used in Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
10
), p.
101901
.10.1115/1.4030247
38.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
7
), p.
071401
.10.1115/1.4000951
39.
Vargas
,
J. V.
,
Bejan
,
A.
, and
Siems
,
D. L.
,
2001
, “
Integrative Thermodynamic Optimization of the Crossflow Heat Exchanger for an Aircraft Environmental Control System
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
760
769
.10.1115/1.1375811
40.
Elsayed
,
M. L.
,
Mesalhy
,
O.
,
Mohammed
,
R. H.
,
Kizito
,
J. P.
,
Leland
,
Q. H.
, and
Chow
,
L. C.
,
2019
, “
Enhancement of a Heat Sink Performance Using a Partial Shield and/or a Guide Plate
,”
Int. J. Heat Mass Transfer
,
134
, pp.
948
958
.10.1016/j.ijheatmasstransfer.2019.01.096
41.
Racine
,
E. M.
,
2016
,
Experimental Study-High Altitude Forced Convective Cooling of Electromechanical Actuation Systems
,
University of Dayton Research Institute
, Dayton, OH.
42.
Žukauskas
,
A.
, and
Ulinskas
,
R.
,
1985
, “
Efficiency Parameters for Heat Transfer in Tube Banks
,”
Heat Transfer Eng.
,
6
(
1
), pp.
19
25
.10.1080/01457638508939614
43.
Kays
,
W. M.
, and
London
,
A. L
,
1997
,
Compact Heat Exchangers
, Heat Exchanger Lecture Seminar, Brussels, Belgium, Jan. 24–28.
44.
Jones
,
W. P.
, and
Launder
,
B.
,
1973
, “
The Calculation of low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
.10.1016/0017-9310(73)90125-7
45.
United States Air Force
,
1976
, “
U.S. Standard Atmosphere
,”
United States Air Force
,
Washington, DC
.
46.
Fakheri
,
A.
,
2003
, “
The Shell and Tube Heat Exchanger Efficiency and Its Relation to Effectiveness
,”
ASME
Paper No. IMECE2003-41633.10.1115/IMECE2003-41633
You do not currently have access to this content.