Abstract

Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number values, are explored. An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tabular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.

References

1.
Holman
,
J.
,
1986
,
Heat Transfer
, 6th ed.,
McGraw-Hill
,
New York
.
2.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
New York
.
3.
Cole
,
K.
,
Beck
,
J.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
, 2nd ed.,
Hemisphere Press
,
New York
.
4.
Cole
,
K.
,
Woodbury
,
K.
,
Beck
,
J.
,
de Monte
,
F.
,
Amos
,
D.
,
Haji-Sheikh
,
A.
,
Crittenden
,
P.
,
Guimaraes
,
G.
,
McMasters
,
R.
, and
Roberty
,
N.
,
2013
, “Exact Analytical Conduction Toolbox (ExACT),”
University of Nebraska
,
Lincoln, NE
, accessed Sept. 10, 2019, https://exact.unl.edu/
5.
Pacheco
,
C.
,
2022
, “
An Online Database of Benchmark Problems for Verification of Inverse Problems Computer Codes
,” Special Issue Selected Papers From the 10th International Conference on Inverse Problems in Engineering (
ICIPE 22
), Francavilla Al Mare, Chieti, Italy, May 15–19, p.
67
.https://www.researchgate.net/publication/363488019_An_online_database_of_benchmark_problems_for_verification_of_inverse_problems_computer_codes
6.
McMasters
,
R.
,
de Monte
,
F.
,
D'Alessandro
,
G.
, and
Beck
,
J.
,
2021
, “
Verification of ANSYS and Matlab Heat Conduction Results Using an ‘Intrinsically’ Verified Exact Analytical Solution
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
6
(
2
), p.
021005
.10.1115/1.4050610
7.
Beck
,
J.
,
McMasters
,
R.
,
Dowding
,
K.
, and
Amos
,
D.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2984
2994
.10.1016/j.ijheatmasstransfer.2006.01.045
8.
Cole
,
K.
,
Beck
,
J.
,
Woodbury
,
K.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.10.1016/j.ijthermalsci.2013.11.002
9.
Beck
,
J.
, and
Arnold
,
K.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
10.
Woodbury
,
K. A.
,
Najafi
,
H.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2023
,
Inverse Heat Conduction: III-Posed Problems
, 2nd ed.,
Wiley
.
11.
Oldham
,
K.
,
Myland
,
J.
, and
Spanier
,
J.
,
2009
,
An Atlas of Functions
, 2nd ed.,
Springer
,
New York
.
12.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1972
,
Handbook of Mathematical Functions
, 10th ed.,
U.S. Government Publishing Office, Washington, DC
, p.
1025
.
13.
McMasters
,
R.
,
de Monte
,
F.
, and
Beck
,
J.
,
2019
, “
Generalized Solution for Two-Dimensional Transient Heat Conduction Problems With Partial Heating Near a Corner
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
7
), p.
071301
.10.1115/1.4043568
14.
McMasters
,
R.
,
de Monte
,
F.
, and
Beck
,
J.
,
2020
, “
Generalized Solution for Three-Dimensional Transient Heat Conduction Problems With Partial Heating
,”
J. Thermophys. Heat Transfer
,
34
(
3
), pp.
516
521
.10.2514/1.T5888
15.
Cole
,
K.
, and
Crittenden
,
P.
,
2001
, “
Heat Conduction in Cartesian Coordinates and a Library of Green's Functions
,”
Proceedings of the 35th National Heat Transfer Conference
, Anaheim, CA, June 10–12.
16.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2011
, “
A Heat-Flux Based Building Block Approach for Solving Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2789
2800
.10.1016/j.ijheatmasstransfer.2011.02.060
17.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
2000
, “
An Efficient Method of Computing Eigenvalues in Heat Conduction
,” Numer.
Heat Transfer, Part B
,
38
, pp.
133
156
.10.1080/104077900750034643
18.
Woodbury
,
K. A.
,
Najafi
,
H.
, and
Beck
,
J. V.
,
2017
, “
Exact Analytical Solution for 2-D Transient Heat Conduction in a Rectangle With Partial Heating on One Edge
,”
Int. J. Therm. Sci.
,
112
, pp.
252
262
.10.1016/j.ijthermalsci.2016.10.014
19.
D'Alessandro
,
G.
,
de Monte
,
F.
,
Gasparin
,
S.
, and
Berger
,
J.
,
2023
, “
Comparison of Uniform and Piecewise-Uniform Heatings When Estimating Thermal Properties of High Conductivity Materials
,”
Int. J. Heat Mass Transfer
,
202
, p.
123666
.10.1016/j.ijheatmasstransfer.2022.123666
20.
McMasters
,
R.
,
de Monte
,
F.
,
Beck
,
J.
, and
Amos
,
D.
,
2018
, “
Transient Two-Dimensional Heat Conduction Problem With Partial Heating Near Corners
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
2
), p.
021301
.10.1115/1.4037542
You do not currently have access to this content.