Abstract

This experimental thermal performance investigation presents that the hot air at a significantly high temperature, and simultaneously at high power density and energy density of phase change material (PCM) can be obtained utilizing a novel design of PCM embedded solar air heater employing impinging stable air jet array. Investigation is carried out following two main objectives, i.e., to obtain (i) instant and (ii) long thermal backups. In the reported design configuration, impinging stable air jets on absorber plate are obtained by reducing the flow path of expelled air from upstream air jets that increased the heat transfer rate to air and consequently instant thermal backup. Although, the use of wavy PCM unit provides instant and long thermal backup by increasing heat transfer area that augments the heat transfer to air and the collection of solar radiations, respectively. Moreover, the present study is extended as follows, (i) the use of shutter on glass cover to increase thermal performance during nocturnal hours, (ii) charging of PCM till the maximum solar radiation hours and use of the stored energy during nocturnal hours, (iii) thermal performance analysis to reveal instant thermal backup, (iv) thermal performance investigation during variable weather conditions, and (v) thermal performance investigation for low ambient air temperature. The obtained results revealed that for the unit collector area, significant thermal backup of about 6 h at a temperature rise of ≥5 °C can be obtained by utilizing the above-mentioned provisions in this research.

References

1.
Muhammad
,
S.
,
Rehman
,
T.
,
Ali
,
H.
,
Sajjad
,
U.
,
Ali
,
R.
, and
Bhatti
,
M. S.
,
2019
, “
Experimental Thermal Performance Analysis of Finned Tube Phase Change Material Based Double Pass Solar Air Heater
,”
Case Stud. Therm. Eng.
,
15
, p.
100543
.10.1016/j.csite.2019.100543
2.
Sharma
,
S.
,
Sharma
,
V. K.
,
Jha
,
R.
, and
Ray
,
R. A.
,
1990
, “
Evaluation of the Performance of a Cabinet Type Solar Dryer
,”
Energy Convers. Manage.
,
30
(
2
), pp.
75
80
.10.1016/0196-8904(90)90016-R
3.
Abuşka
,
M.
,
Şevik
,
S.
, and
Kayapunar
,
A.
,
2019
, “
A Comparative Investigation of the Effect of Honeycomb Core on the Latent Heat Storage With PCM in Solar Air Heater
,”
Appl. Therm. Eng.
,
148
, pp.
684
693
.10.1016/j.applthermaleng.2018.11.056
4.
Salih
,
S. M.
,
Jalil
,
J. M.
, and
Najim
,
S. E.
,
2019
, “
Experimental and Numerical Analysis of Double-Pass Solar Air Heater Utilizing Multiple Capsules PCM
,”
Renewable Energy
,
143
, pp.
1053
1066
.10.1016/j.renene.2019.05.050
5.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Experimental Investigation of Thermal Performance of Flat and V-Corrugated Plate Solar Air Heaters With and Without PCM as Thermal Energy Storage
,”
Energy Convers. Manage.
,
113
, pp.
264
272
.10.1016/j.enconman.2016.01.068
6.
Moradi
,
R.
,
Ali
,
K.
, and
Somchai
,
W.
,
2017
, “
Optimization of a Solar Air Heater With Phase Change Materials: Experimental and Numerical Study
,”
Exp. Therm. Fluid Sci.
,
89
, pp.
41
49
.10.1016/j.expthermflusci.2017.07.011
7.
Stritih
,
U.
,
Charvat
,
P.
,
Koželj
,
R.
,
Klimes
,
L.
,
Osterman
,
E.
,
Ostry
,
M.
, and
Butala
,
V.
,
2018
, “
PCM Thermal Energy Storage in Solar Heating of Ventilation Air—Experimental and Numerical Investigations
,”
Sustainable Cities Soc.
,
37
, pp.
104
115
.10.1016/j.scs.2017.10.018
8.
Singh
,
P. L.
,
Deshpande
,
S. D.
, and
Jena
,
P. C.
,
2015
, “
Thermal Performance of Packed Bed Heat Storage System for Solar Air Heaters
,”
Energy Sustainable Dev.
,
29
, pp.
112
117
.10.1016/j.esd.2015.10.010
9.
Wang
,
Z.
,
Diao
,
Y.
,
Zhao
,
Y.
,
Chen
,
C.
,
Liang
,
L.
, and
Wang
,
T.
,
2019
, “
Thermal Performance Investigation of an Integrated Collector–Storage Solar Air Heater on the Basis of Lap Joint-Type Flat Micro-Heat Pipe Arrays: Simultaneous Charging and Discharging Mode
,”
Energy
,
181
, pp.
882
896
.10.1016/j.energy.2019.05.197
10.
Khanlari
,
A.
,
Sözen
,
A.
,
Şirin
,
C.
,
Tuncer
,
A. D.
, and
Gungor
,
A.
,
2020
, “
Performance Enhancement of a Greenhouse Dryer: Analysis of a Cost-Effective Alternative Solar Air Heater
,”
J. Cleaner Prod.
,
251
, p.
119672
.10.1016/j.jclepro.2019.119672
11.
Kuznik
,
F.
, and
Virgone
,
J.
,
2009
, “
Experimental Investigation of Wallboard Containing Phase Change Material: Data for Validation of Numerical Modeling
,”
Energy Build.
,
41
(
5
), pp.
561
570
.10.1016/j.enbuild.2008.11.022
12.
Esakkimuthu
,
S.
,
Hassabou
,
A. H.
,
Palaniappan
,
C.
,
Spinnler
,
M.
,
Blumenberg
,
J.
, and
Velraj
,
R.
,
2013
, “
Experimental Investigation on Phase Change Material Based Thermal Storage System for Solar Air Heating Applications
,”
Sol. Energy
,
88
, pp.
144
153
.10.1016/j.solener.2012.11.006
13.
Chaatouf
,
D.
,
Ghiaus
,
A. G.
, and
Amraqui
,
S.
,
2022
, “
Optimization of a Solar Air Heater Using a Phase Change Material for Drying Applications
,”
J. Energy Storage
,
55
, p.
105513
.10.1016/j.est.2022.105513
14.
Charvat
,
P.
,
Klimeš
,
L.
, and
Ostry
,
M.
,
2014
, “
Numerical and Experimental Investigation of a PCM-Based Thermal Storage Unit for Solar Air Systems
,”
Energy Build.
,
68
, pp.
488
497
.10.1016/j.enbuild.2013.10.011
15.
Khadraoui
,
A. E.
,
Bouadila
,
S.
,
Kooli
,
S.
,
Farhat
,
A.
, and
Guizani
,
A.
,
2017
, “
Thermal Behavior of Indirect Solar Dryer: Nocturnal Usage of Solar Air Collector With PCM
,”
J. Cleaner Prod.
,
148
, pp.
37
48
.10.1016/j.jclepro.2017.01.149
16.
Singh
,
S.
, and
Negi
,
B. S.
,
2020
, “
Numerical Thermal Performance Investigation of Phase Change Material Integrated Wavy Finned Single Pass Solar Air Heater
,”
J. Energy Storage
,
32
, p.
102002
.10.1016/j.est.2020.102002
17.
Khanlari
,
A.
,
Tuncer
,
A. D.
,
Sözen
,
A.
,
Aytaç
,
İ.
,
Çiftçi
,
E.
, and
Variyenli
,
H. İ.
,
2022
, “
Energy and Exergy Analysis of a Vertical Solar Air Heater With Nano-Enhanced Absorber Coating and Perforated Baffle
,”
Renewable Energy
,
187
, pp.
586
602
.10.1016/j.renene.2022.01.074
18.
Raj
,
A. K.
,
Srinivas
,
M.
, and
Jayaraj
,
S.
,
2019
, “
A Cost-Effective Method to Improve the Performance of Solar Air Heaters Using Discrete Macro-Encapsulated PCM Capsules for Drying Applications
,”
Appl. Therm. Eng.
,
146
, pp.
910
920
.10.1016/j.applthermaleng.2018.10.055
19.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal and Thermohydraulic Efficiency of Recyclic-Type Double-Pass Solar Air Heaters With Fins and Baffles
,”
Heat Transfer Eng.
,
37
(
15
), pp.
1302
1317
.10.1080/01457632.2015.1119619
20.
Wang
,
Z. Y.
,
Diao
,
Y. H.
,
Liang
,
L.
,
Zhao
,
Y. H.
,
Zhu
,
T. T.
, and
Bai
,
F. W.
,
2017
, “
Experimental Study on an Integrated Collector Storage Solar Air Heater Based on Flat Micro-Heat Pipe Arrays
,”
Energy Build.
,
152
, pp.
615
628
.10.1016/j.enbuild.2017.07.069
21.
Krishnananth
,
S. S.
, and
Murugavel
,
K. K.
,
2013
, “
Experimental Study on Double Pass Solar Air Heater With Thermal Energy Storage
,”
J. King Saud Univ.-Eng. Sci.
,
25
(
2
), pp.
135
140
.10.1016/j.jksues.2012.05.004
22.
Verma
,
G.
, and
Singh
,
S.
,
2021
, “
Computational Multiphase Iterative Solution Procedure for Thermal Performance Investigation of Phase Change Material Embedded Parallel Flow Solar Air Heater
,”
J. Energy Storage
,
39
, p.
102642
.10.1016/j.est.2021.102642
23.
Atal
,
A.
,
Wang
,
Y.
,
Harsha
,
M.
, and
Sengupta
,
S.
,
2016
, “
Effect of Porosity of Conducting Matrix on a Phase Change Energy Storage Device
,”
Int. J. Heat Mass Transfer
,
93
, pp.
9
16
.10.1016/j.ijheatmasstransfer.2015.09.033
24.
Chaurasiya
,
S. K.
, and
Singh
,
S.
,
2023
, “
Thermohydraulic Performance Analysis of a Solar Air Heater Design Employing Wavy Corrugated Plates and Impinging Air Jet Array
,”
J. Enhanced Heat Transfer
,
30
(
1
), pp.
75
104
.10.1615/JEnhHeatTransf.2022044410
25.
Chaurasiya
,
S. K.
, and
Singh
,
S.
,
2023
, “
Heat Transfer and Fluid Dynamics Study in Solar Air Heater Employing Impinging Circular Air Jet Array for Effective Jet Stability
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
1
), p.
012901
.10.1115/1.4056004
26.
Chaurasiya
,
S. K.
, and
Singh
,
S.
,
2023
, “
High Thermal Performance of the Solar Air Heater Designs Triggered by Improved Jet Stability
,”
Renewable Energy
,
204
, pp.
532
545
.10.1016/j.renene.2023.01.031
27.
ASHRAE
,
1977
, “
Method of Testing of Determines Thermal Performance of Solar Collector
,” ASHRAE, New York, Standard No. 93–77.
28.
Singh
,
S.
,
Singh
,
A.
, and
Chander
,
S.
,
2019
, “
Thermal Performance of a Fully Developed Serpentine Wavy Channel Solar Air Heater
,”
J. Energy Storage
,
25
, p.
100896
.10.1016/j.est.2019.100896
29.
Singh
,
S.
,
Chaurasiya
,
S. K.
,
Negi
,
B. S.
,
Chander
,
S.
,
Nemś
,
M.
, and
Negi
,
S.
,
2020
, “
Utilizing Circular Jet Impingement to Enhance Thermal Performance of Solar Air Heater
,”
Renewable Energy
,
154
, pp.
1327
1345
.10.1016/j.renene.2020.03.095
30.
Holman
,
J. P.
, and
Gajda
,
W. J.
,
2001
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
31.
Singh
,
S.
,
Chaurasiya
,
S. K.
, and
Negi
,
B. S.
,
2021
, “
Efficient Design of a Wavy Channel Embedded With Porous Media for Solar Air Heating
,”
Energy Sources, Part A
,
43
(
21
), pp.
2738
2754
.10.1080/15567036.2020.1850930
You do not currently have access to this content.