Abstract

Many studies have been conducted on two-dimensional (2D) transient heat conduction, but analytic modeling is still uncommon for the cases with complex boundary constraints due to the mathematical challenge. With an unusual symplectic superposition method (SSM), this paper reports new analytic solutions to 2D isotropic transient heat conduction problems with heat source over a rectangular region under mixed boundary constraints at an edge. With the Laplace transform, the Hamiltonian governing equation is derived. The applicable mathematical treatments, e.g., the variable separation and the symplectic eigenvector expansion in the symplectic space, are implemented for the fundamental solutions whose superposition yields the ultimate solutions. Benchmark results obtained by the present method are tabulated, with verification by the finite element solutions. Instead of the conventional Euclidean space, the present symplectic-space solution framework has the superiority on rigorous derivations without predetermining solution forms, which may be extended to more issues with the complexity caused by mixed boundary constraints.

References

1.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
The Clarendon Press
,
Oxford, UK
.
2.
Hsiao
,
J. S.
, and
Chung
,
B. T. F.
,
1986
, “
An Efficient Algorithm for Finite-Element Solution to Two-Dimensional Heat-Transfer With Melting and Freezing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
2
), pp.
462
464
.10.1115/1.3246948
3.
Padovan
,
J.
,
1974
, “
Steady Conduction of Heat in Linear and Nonlinear Fully Anisotropic Media by Finite-Elements
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
3
), pp.
313
318
.10.1115/1.3450198
4.
Yan
,
C.
,
Jiao
,
Y.
, and
Zheng
,
H.
,
2019
, “
A Three‐Dimensional Heat Transfer and Thermal Cracking Model Considering the Effect of Cracks on Heat Transfer
,”
Int. J. Numer. Anal. Methods Geomech.
,
43
(
10
), pp.
1825
1853
.10.1002/nag.2937
5.
Xu
,
W.
,
Li
,
P.
,
Liu
,
H.
,
Wang
,
H.
, and
Wang
,
X.
,
2022
, “
Numerical Simulation of Molten Pool Formation During Laser Transmission Welding Between PET and SUS304
,”
Int. Commun. Heat Mass Transfer
,
131
, p.
105860
.10.1016/j.icheatmasstransfer.2021.105860
6.
Zhou
,
L.
,
Feng
,
W.
,
Sun
,
C.
,
Peng
,
H.
,
Cui
,
M.
, and
Gao
,
X.
,
2022
, “
A General Analytical PBEM for Solving Three-Dimensional Transient Inhomogeneous Heat Conduction Problems With Spatially Varying Heat Generation
,”
Int. Commun. Heat Mass Transfer
,
137
, p.
106227
.10.1016/j.icheatmasstransfer.2022.106227
7.
Yu
,
B.
,
Cao
,
G.
,
Ren
,
S.
,
Gong
,
Y.
, and
Dong
,
C.
,
2022
, “
An Isogeometric Boundary Element Method for Transient Heat Transfer Problems in Inhomogeneous Materials and the Non-Iterative Inversion of Loads
,”
Appl. Therm. Eng.
,
212
, p.
118600
.10.1016/j.applthermaleng.2022.118600
8.
DeSilva
,
S. J.
,
Chan
,
C. L.
,
Chandra
,
A.
, and
Lim
,
J.
,
1998
, “
Boundary Element Method Analysis for the Transient Conduction-Convection in 2-D With Spatially Variable Convective Velocity
,”
Appl. Math. Modell.
,
22
(
1–2
), pp.
81
112
.10.1016/S0307-904X(98)00010-9
9.
Pepper
,
D. W.
,
Wang
,
X.
, and
Carrington
,
D. B.
,
2013
, “
A Meshless Method for Modeling Convective Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
1
), p.
011003
.10.1115/1.4007650
10.
Tian
,
J.
, and
Rao
,
S. S.
,
2012
, “
Meshless Local Petrov-Galerkin Method for Three-Dimensional Heat Transfer Analysis
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
11
), p.
112701
.10.1115/1.4006845
11.
Hidayat
,
M. I. P.
,
Ariwahjoedi
,
B.
,
Parman
,
S.
, and
Rao
,
T. V. V. L. N.
,
2017
, “
Meshless Local B-Spline Collocation Method for Two-Dimensional Heat Conduction Problems With Nonhomogenous and Time-Dependent Heat Sources
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
7
), p.
071302
.10.1115/1.4036003
12.
Sidorov
,
V. N.
, and
Matskevich
,
S. M.
,
2014
, “
Solving an Unsteady-State and Non-Uniform Heat Conduction Transfer Problem Using Discrete-Analytical Method
,”
Procedia Eng.
,
91
, pp.
63
68
.10.1016/j.proeng.2014.12.013
13.
Sidorov
,
V. N.
, and
Matskevich
,
S. M.
,
2015
, “
Discrete-Analytic Solution of Unsteady-State Heat Conduction Transfer Problem Based on a Theory of Matrix Function
,”
Procedia Eng.
,
111
, pp.
726
733
.10.1016/j.proeng.2015.07.138
14.
Sidorov
,
V. N.
, and
Matskevich
,
S. M.
,
2016
, “
Discrete-Analytical Solution of the Unsteady-State Heat Conduction Transfer Problem Based on the Finite Element Method
,”
International Conference on Information and Digital Technologies
(
IDT
), Rzeszow, Poland, July 5–7, pp.
241
244
.10.1109/DT.2016.7557180
15.
Reséndiz-Flores
,
E. O.
, and
García-Calvillo
,
I. D.
,
2014
, “
Application of the Finite Pointset Method to Non-Stationary Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
71
, pp.
720
723
.10.1016/j.ijheatmasstransfer.2013.12.077
16.
Reséndiz-Flores
,
E. O.
, and
Saucedo-Zendejo
,
F. R.
,
2015
, “
Two-Dimensional Numerical Simulation of Heat Transfer With Moving Heat Source in Welding Using the Finite Pointset Method
,”
Int. J. Heat Mass Transfer
,
90
, pp.
239
245
.10.1016/j.ijheatmasstransfer.2015.06.023
17.
Reséndiz-Flores
,
E. O.
, and
García-Calvillo
,
I. D.
,
2015
, “
Numerical Solution of 3D Non-Stationary Heat Conduction Problems Using the Finite Pointset Method
,”
Int. J. Heat Mass Transfer
,
87
, pp.
104
110
.10.1016/j.ijheatmasstransfer.2015.03.084
18.
Reséndiz-Flores
,
E. O.
, and
Saucedo-Zendejo
,
F. R.
,
2018
, “
Numerical Simulation of Coupled Fluid Flow and Heat Transfer With Phase Change Using the Finite Pointset Method
,”
Int. J. Therm. Sci.
,
133
, pp.
13
21
.10.1016/j.ijthermalsci.2018.07.008
19.
Varanasi
,
C.
,
Murthy
,
J. Y.
, and
Mathur
,
S.
,
2010
, “
A Meshless Finite Difference Method for Conjugate Heat Conduction Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
8
), p.
081303
.10.1115/1.4001363
20.
Malek
,
A.
,
Bojdi
,
Z. K.
, and
Golbarg
,
P. N. N.
,
2012
, “
Solving Fully Three-Dimensional Microscale Dual Phase Lag Problem Using Mixed-Collocation, Finite Difference Discretization
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
9
), p.
094504
.10.1115/1.4006271
21.
Gordaninejad
,
F.
, and
Francis
,
J.
,
1984
, “
A Finite Difference Solution to Transient Combined Conductive and Radiative Heat-Transfer in an Annular Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
106
(
4
), pp.
888
891
.10.1115/1.3246770
22.
Chen
,
H.
, and
Liu
,
D.
,
2022
, “
Formulation of a Nonlocal Discrete Model for Anisotropic Heat Conduction Problems
,”
Int. J. Therm. Sci.
,
182
, p.
107816
.10.1016/j.ijthermalsci.2022.107816
23.
Zhang
,
H.
,
Wang
,
W.
,
Zhang
,
S.
, and
Zhao
,
Z.
,
2018
, “
Semi-Analytic Solution of Three-Dimensional Temperature Distribution in Multilayered Materials Based on Explicit Frequency Response Functions
,”
Int. J. Heat Mass Transfer
,
118
, pp.
208
222
.10.1016/j.ijheatmasstransfer.2017.10.118
24.
Simões
,
N.
,
Simões
,
I.
,
Tadeu
,
A.
,
Vasconcellos
,
C. A. B.
, and
Mansur
,
W. J.
,
2012
, “
3D Transient Heat Conduction in Multilayer Systems—Experimental Validation of Semi-Analytical Solution
,”
Int. J. Therm. Sci.
,
57
, pp.
192
203
.10.1016/j.ijthermalsci.2012.02.007
25.
Ramadan
,
K.
,
2009
, “
Semi-Analytical Solutions for the Dual Phase Lag Heat Conduction in Multilayered Media
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
14
25
.10.1016/j.ijthermalsci.2008.03.004
26.
Arefmanesh
,
A.
,
Arani
,
A. A. A.
, and
Emamifar
,
A.
,
2020
, “
Semi-Analytical Solutions for Different Non-Linear Models of Dual Phase Lag Equation in Living Tissues
,”
Int. Commun. Heat Mass Transfer
,
115
, p.
104596
.10.1016/j.icheatmasstransfer.2020.104596
27.
Moosaie
,
A.
,
2007
, “
Non-Fourier Heat Conduction in a Finite Medium Subjected to Arbitrary Periodic Surface Disturbance
,”
Int. Commun. Heat Mass Transfer
,
34
(
8
), pp.
996
1002
.10.1016/j.icheatmasstransfer.2007.05.002
28.
Zhang
,
Y.
,
Yang
,
A.
, and
Yang
,
X.
,
2013
, “
1-D Heat Conduction in a Fractal Medium: A Solution by the Local Fractional Fourier Series Method
,”
Therm. Sci.
,
17
(
3
), pp.
953
956
.10.2298/TSCI130303041Z
29.
McMasters
,
R. L.
,
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2018
, “
Transient Two-Dimensional Heat Conduction Problem With Partial Heating Near Corners
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
2
), p.
021301
.10.1115/1.4037542
30.
Grine
,
A.
,
Desmons
,
J. Y.
, and
Harmand
,
S.
,
2007
, “
Models for Transient Conduction in a Flat Plate Subjected to a Variable Heat Flux
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
492
500
.10.1016/j.applthermaleng.2006.06.013
31.
McMasters
,
R. L.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2019
, “
Generalized Solution for Two-Dimensional Transient Heat Conduction Problems With Partial Heating Near a Corner
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
7
), p.
071301
.10.1115/1.4043568
32.
Fernandes
,
A. P.
,
dos Santos
,
M. B.
, and
Guimarães
,
G.
,
2015
, “
An Analytical Transfer Function Method to Solve Inverse Heat Conduction Problems
,”
Appl. Math. Modell.
,
39
(
22
), pp.
6897
6914
.10.1016/j.apm.2015.02.012
33.
Mahajerin
,
E.
, and
Burgess
,
G.
,
2003
, “
A Laplace Transform-Based Fundamental Collocation Method for Two-Dimensional Transient Heat Flow
,”
Appl. Therm. Eng.
,
23
(
1
), pp.
101
111
.10.1016/S1359-4311(02)00138-2
34.
Parhizkar Yaghoobi
,
M.
, and
Ghannad
,
M.
,
2020
, “
An Analytical Solution for Heat Conduction of FGM Cylinders With Varying Thickness Subjected to Non-Uniform Heat Flux Using a First-Order Temperature Theory and Perturbation Technique
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104684
.10.1016/j.icheatmasstransfer.2020.104684
35.
Biswas
,
P.
,
Singh
,
S.
, and
Bindra
,
H.
,
2019
, “
A Closed Form Solution of Dual-Phase Lag Heat Conduction Problem With Time Periodic Boundary Conditions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
3
), p.
031302
.10.1115/1.4042491
36.
Rezania
,
A.
,
Ghorbali
,
A.
,
Domairry
,
G.
, and
Bararnia
,
H.
,
2008
, “
Consideration of Transient Heat Conduction in a Semi-Infinite Medium Using Homotopy Analysis Method
,”
Appl. Math. Mech.-Engl. Ed.
,
29
(
12
), pp.
1625
1632
.10.1007/s10483-008-1210-3
37.
Luchesi
,
V. M.
, and
Coelho
,
R. T.
,
2012
, “
An Inverse Method to Estimate the Moving Heat Source in Machining Process
,”
Appl. Therm. Eng.
,
45–46
, pp.
64
78
.10.1016/j.applthermaleng.2012.04.014
38.
Wang
,
H.
, and
Liu
,
C.
,
2013
, “
Analytical Solution of Two-Dimensional Transient Heat Conduction in Fiber-Reinforced Cylindrical Composites
,”
Int. J. Therm. Sci.
,
69
, pp.
43
52
.10.1016/j.ijthermalsci.2013.02.001
39.
Li
,
R.
,
Zhong
,
Y.
, and
Li
,
M.
,
2013
, “
Analytic Bending Solutions of Free Rectangular Thin Plates Resting on Elastic Foundations by a New Symplectic Superposition Method
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
469
, p.
20120681
.10.1098/rspa.2012.0681
40.
Li
,
R.
,
Ni
,
X.
, and
Cheng
,
G.
,
2015
, “
Symplectic Superposition Method for Benchmark Flexure Solutions for Rectangular Thick Plates
,”
J. Eng. Mech.
,
141
(
2
), p.
04014119
.10.1061/(ASCE)EM.1943-7889.0000840
41.
Zheng
,
X.
,
Sun
,
Y.
,
Huang
,
M.
,
An
,
D.
,
Li
,
P.
,
Wang
,
B.
, and
Li
,
R.
,
2019
, “
Symplectic Superposition Method-Based New Analytic Bending Solutions of Cylindrical Shell Panels
,”
Int. J. Mech. Sci.
,
152
, pp.
432
442
.10.1016/j.ijmecsci.2019.01.012
42.
Li
,
R.
,
Zheng
,
X.
,
Yang
,
Y.
,
Huang
,
M.
, and
Huang
,
X.
,
2019
, “
Hamiltonian System-Based New Analytic Free Vibration Solutions of Cylindrical Shell Panels
,”
Appl. Math. Modell.
,
76
, pp.
900
917
.10.1016/j.apm.2019.07.020
43.
Xu
,
D.
,
Ni
,
Z.
,
Li
,
Y.
,
Hu
,
Z.
,
Tian
,
Y.
,
Wang
,
B.
, and
Li
,
R.
,
2021
, “
On the Symplectic Superposition Method for Free Vibration of Rectangular Thin Plates With Mixed Boundary Constraints on an Edge
,”
Theor. Appl. Mech. Lett.
,
11
(
5
), p.
100293
.10.1016/j.taml.2021.100293
44.
Li
,
R.
,
Wang
,
B.
,
Li
,
G.
, and
Tian
,
B.
,
2016
, “
Hamiltonian System-Based Analytic Modeling of the Free Rectangular Thin Plates' Free Vibration
,”
Appl. Math. Modell.
,
40
(
2
), pp.
984
992
.10.1016/j.apm.2015.06.019
45.
Wang
,
B.
,
Li
,
P.
, and
Li
,
R.
,
2016
, “
Symplectic Superposition Method for New Analytic Buckling Solutions of Rectangular Thin Plates
,”
Int. J. Mech. Sci.
,
119
, pp.
432
441
.10.1016/j.ijmecsci.2016.11.006
46.
Li
,
R.
,
Zheng
,
X.
,
Wang
,
H.
,
Xiong
,
S.
,
Yan
,
K.
, and
Li
,
P.
,
2018
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With All Edges Free
,”
Int. J. Mech. Sci.
,
144
, pp.
67
73
.10.1016/j.ijmecsci.2018.05.041
47.
Li
,
R.
,
Wang
,
H.
,
Zheng
,
X.
,
Xiong
,
S.
,
Hu
,
Z.
,
Yan
,
X.
,
Xiao
,
Z.
,
Xu
,
H.
, and
Li
,
P.
,
2019
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With Two Free Adjacent Edges by the Symplectic Superposition Method
,”
Eur. J. Mech. A-Solids
,
76
, pp.
247
262
.10.1016/j.euromechsol.2019.04.014
48.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
49.
Zhang
,
K.
,
Ge
,
M.
,
Zhao
,
C.
,
Deng
,
Z.
, and
Xu
,
X.
,
2019
, “
Free Vibration of Nonlocal Timoshenko Beams Made of Functionally Graded Materials by Symplectic Method
,”
Compos. Part B-Eng.
,
156
, pp.
174
184
.10.1016/j.compositesb.2018.08.051
50.
Zhao
,
L.
,
Chen
,
W.
, and
,
C.
,
2012
, “
Symplectic Elasticity for Bi-Directional Functionally Graded Materials
,”
Mech. Mater.
,
54
, pp.
32
42
.10.1016/j.mechmat.2012.06.001
51.
Xing
,
Y.
, and
Liu
,
B.
,
2009
, “
New Exact Solutions for Free Vibrations of Rectangular Thin Plates by Symplectic Dual Method
,”
Acta Mech. Sin.
,
25
(
2
), pp.
265
270
.10.1007/s10409-008-0208-4
52.
Fourier
,
J. B. J.
,
1878
,
The Analytical Theory of Heat
,
Cambridge University Press
, Cambridge, UK.
53.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for the Numerical Inversion of Laplace Transforms
,”
J. Comput. Appl. Math.
,
10
(
1
), pp.
113
132
.10.1016/0377-0427(84)90075-X
54.
Xu
,
C.
,
Rong
,
D.
,
Zhou
,
Z.
, and
Xu
,
X.
,
2017
, “
A Novel Hamiltonian-Based Method for Two-Dimensional Transient Heat Conduction in a Rectangle With Specific Mixed Boundary Conditions
,”
J. Therm. Technol.
,
12
(
2
), p.
JTST0021
.10.1299/jtst.2017jtst0021
55.
Yang
,
C.
, and
Song
,
C.
,
1979
, “
Theory of Minimum Rate of Energy-Dissipation
,”
J. Hydraul. Div.-ASCE
,
105
(
7
), pp.
769
784
.10.1061/JYCEAJ.0005235
You do not currently have access to this content.