Abstract

Laminar natural convection heat transfer from vertical hollow polygonal cylinders with a wide range of cross-sectional areas is investigated. The buoyancy-driven three-dimensional (3D) flow around hollow polygonal cylinders immersed in quiescent ambient air with equal outer and inner surface temperatures is analyzed. The governing equations are numerically solved in nondimensional variables using the finite volume method. The numerical solution is validated using available experimental and numerical data. Results of the mean Nusselt number for the outer (Nu¯ho) and inner (Nu¯hi) surfaces are obtained by varying a number of key parameters. These parameters are the Rayleigh number based on the cylinder height (Rah) in the range 103 Rah 107, the nondimensional cross-sectional area (AC) in the range 0.006 AC 0.5, and the number of sides of the polygon (N) in the range 6 N . In all cases, a Prandtl number (Pr) of 0.7 has been assumed. The study shows that at a certain Rayleigh number and a certain number of sides, the heat transfer rate from the inner surface decreases (by as much as 79.8%) as the polygon area decreases (by as much as 83.32%), whereas the heat transfer rate on the outer surface increases (by as much as 133.3%) as the polygon area decreases (by as much as 83.32%). It has also been found that the behavior of the buoyancy-driven flow in the vicinity of the outer surface is fundamentally different than that near the inner surface. Additional details about this fundamental difference are presented in the Results and Discussion section of the paper. New correlations to calculate the average velocity at the exit surface of the cylinder inner core and the mean Nusselt number for both the outer and inner surfaces have also been developed. Also, correlations have been developed for selecting the optimal cross-sectional area for purposes of identifying the regions where the thermal and velocity boundary layers overlap within the inner core of the cylinder.

References

1.
Honnor
,
F.
, and
Thomas
,
M.
,
1969
, “
Packaging and Cooling Problems Associated With Microelectronics Equipment
,”
Microelectron. Reliab.
,
8
(
4
), pp.
331
337
.10.1016/0026-2714(69)90394-1
2.
Steinberg
,
D. S.
,
1980
,
Cooling Techniques for Electronic Equipment
, 2nd ed.,
Wiley
,
Westlake Village, CA
.
3.
Yeh
,
L. T.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
.10.1115/1.2792113
4.
Incropera
,
F. P.
,
1988
, “
Convection Heat Transfer in Electronic Equipment Cooling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
4b
), pp.
1097
1111
.10.1115/1.3250613
5.
Effendi
,
N. S.
,
Putra
,
S. S. R.
, and
Kim
,
K. J.
,
2018
, “
Prediction Methods for Natural Convection Around Hollow Hybrid Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
126
, pp.
272
280
.10.1016/j.ijthermalsci.2018.01.002
6.
Xin
,
R.
, and
Ebadian
,
M.
,
1996
, “
Natural Convection Heat Transfer From Helicoidal Pipes
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
297
302
.10.2514/3.787
7.
Madurai Elavarasan
,
R.
,
Mudgal
,
V.
,
Selvamanohar
,
L.
,
Wang
,
K.
,
Huang
,
G.
,
Shafiullah
,
G.
,
Markides
,
C. N.
,
Reddy
,
K.
, and
Nadarajah
,
M.
,
2022
, “
Pathways Toward High-Efficiency Solar Photovoltaic Thermal Management for Electrical, Thermal and Combined Generation Applications: A Critical Review
,”
Energy Convers. Manage.
,
255
, p.
115278
.10.1016/j.enconman.2022.115278
8.
Tucker
,
R.
,
Khatamifar
,
M.
,
Lin
,
W.
, and
McDonald
,
K.
,
2021
, “
Experimental Investigation of Orientation and Geometry Effect on Additive Manufactured Aluminium LED Heat Sinks Under Natural Convection
,”
Therm. Sci. Eng. Prog.
,
23
, p.
100918
.10.1016/j.tsep.2021.100918
9.
McGlen
,
R.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1143
1156
.10.1016/j.applthermaleng.2003.12.029
10.
Cebeci
,
T.
,
1974
, “
Laminar-Free-Convective-Teat Transfer From the Outer Surface of a Vertical Slender Circular Cylinder
,”
International Heat Transfer Conference 5,
Tokyo, Japan, Sept. 3–7, pp.
15
19
.10.1615/IHTC5.2830
11.
Popiel
,
C. O.
,
Wojtkowiak
,
J.
, and
Bober
,
K.
,
2007
, “
Laminar Free Convective Heat Transfer From Isothermal Vertical Slender Cylinder
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
607
613
.10.1016/j.expthermflusci.2007.07.003
12.
Popiel
,
C. O.
,
2008
, “
Free Convection Heat Transfer From Vertical Slender Cylinders: A Review
,”
Heat Transfer Eng.
,
29
(
6
), pp.
521
536
.10.1080/01457630801891557
13.
Eslami
,
M.
, and
Jafarpur
,
K.
,
2011
, “
Laminar Natural Convection Heat Transfer From Isothermal Cylinders With Active Ends
,”
Heat Transfer Eng.
,
32
(
6
), pp.
506
513
.10.1080/01457632.2010.506378
14.
Boetcher
,
S. K. S.
,
2014
,
Natural Convection From Circular Cylinders
(Springer Briefs in Applied Sciences and Technology),
Springer International Publishing
, New York.
15.
Day
,
J. C.
,
Zemler
,
M. K.
,
Traum
,
M. J.
, and
Boetcher
,
S. K. S.
,
2013
, “
Laminar Natural Convection From Isothermal Vertical Cylinders: Revisiting a Classical Subject
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
2
), p.
022505
.10.1115/1.4007421
16.
Popiel
,
C. O.
, and
Wojtkowiak
,
J.
,
2004
, “
Experiments on Free Convective Heat Transfer From Side Walls of a Vertical Square Cylinder in Air
,”
Exp. Therm. Fluid Sci.
,
29
(
1
), pp.
1
8
.10.1016/j.expthermflusci.2003.01.002
17.
Al-Arabi
,
M.
, and
Sarhan
,
A.
,
1984
, “
Natural Convection Heat Transfer From Square Cylinders
,”
Appl. Sci. Res.
,
41
(
2
), pp.
93
104
.10.1007/BF00419361
18.
Kalendar
,
A.
, and
Oosthuizen
,
P. H.
,
2013
, “
A Numerical and Experimental Study of Natural Convective Heat Transfer From an Inclined Isothermal Square Cylinder With an Exposed Top Surface
,”
Heat Mass Transfer
,
49
(
5
), pp.
601
616
.10.1007/s00231-012-1106-7
19.
Ali
,
M.
,
2017
, “
Experimental Free Convection Heat Transfer From Inclined Square Cylinders
,”
Heat Mass Transfer
,
53
(
5
), pp.
1643
1655
.10.1007/s00231-016-1881-7
20.
Oosthuizen
,
P.
, and
Kalendar
,
A.
,
2013
,
Natural Convective Heat Transfer From Short Inclined Cylinders
(Springer Briefs in Applied Sciences and Technology),
Springer International Publishing
, New York.
21.
Hassani
,
A. V.
, and
Hollands
,
K. G. T.
,
1989
, “
On Natural Convection Heat Transfer From Three-Dimensional Bodies of Arbitrary Shape
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
2
), pp.
363
371
.10.1115/1.3250686
22.
Yovanovich
,
M.
,
1987
, “
New Nusselt and Sherwood Numbers for Arbitrary Isopotential Bodies at Near Zero Peclet and Rayleigh Numbers
,”
AIAA
Paper No. 1987–1643.10.2514/6.1987-1643
23.
Lee
,
S.
,
Yovanovich
,
M. M.
, and
Jafarpur
,
K.
,
1991
, “
Effects of Geometry and Orientation on Laminar Natural Convection From Isothermal Bodies
,”
J. Thermophys. Heat Transfer
,
5
(
2
), pp.
208
216
.10.2514/3.249
24.
Eslami
,
M.
, and
Jafarpur
,
K.
,
2012
, “
Laminar Free Convection Heat Transfer From Isothermal Convex Bodies of Arbitrary Shape: A New Dynamic Model
,”
Heat Mass Transfer
,
48
(
2
), pp.
301
315
.10.1007/s00231-011-0885-6
25.
Yovanovich
,
M. M.
,
1987
, “
On the Effect of Shape, Aspect Ratio and Orientation Upon Natural Convection From Isothermal Bodies of Complex Shape
,”
ASME HTD
,
82
, pp.
121
129
.http://www.mhtl.uwaterloo.ca/old/paperlib/papers/conv/natural/general/shape.pdf
26.
Arabi
,
P.
, and
Jafarpur
,
K.
,
2016
, “
Effect of Different Flow Regimes on Free Convection Heat Transfer From Isothermal Convex Bodies Over All Range of Rayleigh and Prandtl Numbers
,”
Heat Mass Transfer
,
52
(
8
), pp.
1665
1682
.10.1007/s00231-015-1683-3
27.
Abdelmlek
,
K. B.
, and
Nejma
,
F. B.
,
2022
, “
Impact of Grooved Cylinder on Heat Transfer by Natural Convection in Cylindrical Geometry
,”
Adv. Mech. Eng.
,
14
(
8
), p.
16878132221119906
.10.1177/16878132221119906
28.
Miansari
,
M.
,
Hasanpour
,
R.
,
Alizadeh
,
A.
,
Toghraie
,
D.
, and
Ali Akbari
,
O.
,
2023
, “
Numerical Analysis of Heat Transfer Enhancement in Grooved Vertical Multi-Cylinders at Various Groove Geometries
,”
Alexandria Eng. J.
,
70
, pp.
535
546
.10.1016/j.aej.2023.02.048
29.
Acharya
,
S.
,
Agrawal
,
S.
, and
Dash
,
S. K.
,
2018
, “
Numerical Analysis of Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
5
), p.
052501
.10.1115/1.4038478
30.
Rana
,
B. K.
,
2023
, “
Numerical Investigation on Free Convection From an Isothermally Heated Hollow Inclined Cylinder Suspended in Air
,”
Numer. Heat Transfer, Part A
,
83
(
11
), pp.
1195
1219
.10.1080/10407782.2022.2102398
31.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Heat Transfer and Fluid Flow Around a Thick Hollow Vertical Cylinder Suspended in Air: A Numerical Approach
,”
Int. J. Therm. Sci.
,
152
, p.
106312
.10.1016/j.ijthermalsci.2020.106312
32.
Acharya
,
S.
, and
Dash
,
S. K.
,
2020
, “
Turbulent Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air: A Numerical Approach
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100449
.10.1016/j.tsep.2019.100449
33.
Acharya
,
S.
, and
Dash
,
S. K.
,
2017
, “
Natural Convection Heat Transfer From a Short or Long, Solid or Hollow Horizontal Cylinder Suspended in Air or Placed on Ground
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
7
), p.
072501
.10.1115/1.4035919
34.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2023
, “
Natural Convection From an Isothermally Heated Hollow Vertical Cylinder Submerged in Quiescent Power-Law Fluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021003
.10.1115/1.4055824
35.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2019
, “
3D Numerical Study of Natural Convection Heat Transfer From a Hollow Horizontal Cylinder Placed on the Ground
,”
Int. J. Therm. Sci.
,
140
, pp.
429
441
.10.1016/j.ijthermalsci.2019.03.015
36.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2021
, “
A Comparative Numerical Study on Conjugate Natural Convection From Vertical Hollow Cylinder With Finite Thickness Placed on Ground and in Air
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021026
.10.1115/1.4047568
37.
Rani
,
H. P.
, and
Reddy
,
G. J.
,
2011
, “
Conjugate Transient Free Convective Heat Transfer From a Vertical Slender Hollow Cylinder With Heat Generation Effect
,”
Appl. Math.
,
1
(
2
), pp.
90
98
.10.5923/j.am.20110102.15
38.
Na
,
T.-Y.
,
1995
, “
Effect of Wall Conduction on Natural Convection Over a Vertical Slender Hollow Circular Cylinder
,”
Appl. Sci. Res.
,
54
(
1
), pp.
39
50
.10.1007/BF01666801
39.
Lewandowski
,
W. M.
,
Kubski
,
P.
, and
Bieszk
,
H.
,
1994
, “
Heat Transfer From Polygonal Horizontal Isothermal Surfaces
,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
855
864
.10.1016/0017-9310(94)90121-X
40.
Kalendar
,
A.
,
Kalendar
,
A.
,
Alhendal
,
Y.
,
Karar
,
S.
,
Alenzi
,
A.
, and
Oosthuizen
,
P.
,
2019
, “
Natural Convective Heat Transfer From the Horizontal Isothermal Surface of Polygons of Octagonal and Hexagonal Shapes
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051009
.10.1115/1.4043006
41.
Kalendar
,
A.
,
Karar
,
S.
,
Kalendar
,
A.
, and
Oosthuizen
,
P.
,
2017
, “
Correlations for Natural Convective Heat Transfer From Isothermal Surface of Octagonal and Hexagonal Shapes of Different Aspect Ratios
,”
Heat Transfer–Asian Res.
,
46
(
4
), pp.
362
383
.10.1002/htj.21219
42.
Roslan
,
R.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2014
, “
Natural Convection in a Differentially Heated Square Enclosure With a Solid Polygon
,”
Sci. World J.
,
2014
(
1
), pp.
1
11
.10.1155/2014/617492
43.
Saleh
,
H.
,
Alsabery
,
A. I.
, and
Hashim
,
I.
,
2015
, “
Natural Convection in Polygonal Enclosures With Inner Circular Cylinder
,”
Adv. Mech. Eng.
,
7
(
12
), p.
168781401562289
.10.1177/1687814015622899
44.
Wang
,
Y.
,
Chen
,
J.
, and
Zhang
,
W.
,
2019
, “
Natural Convection in a Circular Enclosure With an Internal Cylinder of Regular Polygon Geometry
,”
AIP Adv.
,
9
(
6
), p.
065023
.10.1063/1.5100892
45.
Ma
,
H. K.
,
Chen
,
B. R.
,
Lan
,
H. W.
, and
Chao
,
C. Y.
,
2010
, “
Study of an LED Device With a Honeycomb Heat Sink
,” 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
289
298
.10.1109/STHERM.2010.5444277
46.
Yang
,
X.
,
Yan
,
H.
,
Wang
,
W.
,
Jin
,
L.
,
Lu
,
T.
, and
Ichimiya
,
K.
,
2015
, “
Thermo-Fluidic Characteristics of Natural Convection in Honeycombs: The Role of Chimney Enhancement
,”
Sci. China Technol. Sci.
,
58
(
8
), pp.
1318
1327
.10.1007/s11431-015-5869-1
47.
Yang
,
X.
,
Bai
,
J.
,
Lu
,
T.
, and
Kim
,
T.
,
2014
, “
Experimental Investigation of Chimney-Enhanced Natural Convection in Hexagonal Honeycombs
,”
Theor. Appl. Mech. Lett.
,
4
(
3
), p.
032005
.10.1063/2.1403205
48.
Liu
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Wang
,
F.
,
Chen
,
Y.
,
Du
,
Q.
,
Sun
,
F.
, and
Yang
,
N.
,
2022
, “
Natural Convection Characteristics of Honeycomb Fin With Different Hole Cells for Battery Phase-Change Material Cooling Systems
,”
J. Energy Storage
,
51
, p.
104578
.10.1016/j.est.2022.104578
49.
Kalendar
,
A.
,
Alhendal
,
Y.
,
Hussain
,
S.
,
Karar
,
S.
, and
Oosthuizen
,
P.
,
2021
, “
Natural Convective Heat Transfer From Vertical Isothermal Polygonal Cylinders
,”
J. Thermophys. Heat Transfer
,
35
(
4
), pp.
854
868
.10.2514/1.T6207
50.
Ghachem
,
K.
,
Hassen
,
W.
,
Maatki
,
C.
,
Kolsi
,
L.
,
Al-Rashed
,
A. A. A. A.
, and
Borjini
,
M.
,
2018
, “
Numerical Simulation of 3D Natural Convection and Entropy Generation in a Cubic Cavity Equipped With an Adiabatic Baffle
,”
Int. J. Heat Technol.
,
36
(
3
), pp.
1047
1054
.10.18280/ijht.360335
51.
Borjini
,
N.
,
Kolsi
,
L.
,
Ghachem
,
K.
,
Maatki
,
C.
, and
Ben Aissia
,
H.
,
2014
, “
Entropy Generation of Double Diffusive Natural Convection in a Three Dimensional Differentially Heated Enclosure
,”
Int. J. Eng.
,
27
(
2
), pp.
215
226
.10.5829/idosi.ije.2014.27.02b.06
52.
Moufekkir
,
F.
,
Moussaoui
,
M.
,
Mezrhab
,
A.
,
Lemonnier
,
D.
, and
Naji
,
H.
,
2012
, “
MRT-Lattice Boltzmann Computations of Natural Convection and Volumetric Radiation in a Tilted Square Enclosure
,”
Int. J. Therm. Sci.
,
54
, pp.
125
141
.10.1016/j.ijthermalsci.2011.11.022
53.
Jami
,
M.
,
Moufekkir
,
F.
,
Mezrhab
,
A.
,
Fontaine
,
J. P.
, and
Bouzidi
,
M.
,
2016
, “
New Thermal MRT Lattice Boltzmann Method for Simulations of Convective Flows
,”
Int. J. Therm. Sci.
,
100
, pp.
98
107
.10.1016/j.ijthermalsci.2015.09.011
54.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
, and
Naji
,
H.
,
2015
, “
Study of Coupled Double Diffusive Convection–Radiation in a Tilted Cavity Via a Hybrid Multi-Relaxation Time-Lattice Boltzmann-Finite Difference and Discrete Ordinate Methods
,”
Heat Mass Transfer
,
51
(
4
), pp.
567
586
.10.1007/s00231-014-1423-0
55.
Nazir
,
M. W.
,
Javed
,
T.
,
Ali
,
N.
, and
Nazeer
,
M.
,
2024
, “
Effects of Radiative Heat Flux and Heat Generation on Magnetohydrodynamics Natural Convection Flow of Nanofluid Inside a Porous Triangular Cavity With Thermal Boundary Conditions
,”
Numer. Methods Partial Differ. Equations
,
40
(
2
), p.
e22768
.10.1002/num.22768
56.
Nazeer
,
M.
,
Nazir
,
M. W.
,
Ali
,
N.
,
Javed
,
T.
,
Abdelmohsen
,
S. A.
, and
Khan
,
M. I.
,
2023
, “
Momentum and Thermal Transport Analysis in MHD Nanofluid Through the Thermally Heated Square Conduit: Finite Element Method
,”
J. Magn. Magn. Mater.
,
580
, p.
170954
.10.1016/j.jmmm.2023.170954
57.
Nazir
,
M. W.
,
Nazeer
,
M.
,
Javed
,
T.
,
Ali
,
N.
,
Al-Basyouni
,
K.
, and
Khan
,
M. I.
,
2023
, “
Hydrothermal Features of the Magnetite Nanoparticles on Natural Convection Flow Through a Square Conduit by Using the Finite Element Method
,”
Int. J. Mod. Phys. B
,
37
(
7
), p.
2350069
.10.1142/S0217979223500698
58.
Nazir
,
M. W.
,
Javed
,
T.
,
Ali
,
N.
,
Nazeer
,
M.
, and
Khan
,
M. I.
,
2022
, “
Theoretical Investigation of Thermal Analysis in Aluminum and Titanium Alloys Filled in Nanofluid Through a Square Cavity Having the Uniform Thermal Condition
,”
Int. J. Mod. Phys. B
,
36
(
22
), p.
2250140
.10.1142/S0217979222501405
59.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
, Indianapolis, IN.
60.
Ferziger
,
J.
,
Perić
,
M.
, and
Street
,
R.
,
2019
,
Computational Methods for Fluid Dynamics
,
Springer
, New York.
61.
Jafarpur
,
K.
,
1992
, “
Analytical and Experimental Study of Laminar Free Convective Heat Transfer From Isothermal Convex Bodies of Arbitrary Shape
,” Ph.D. thesis,
University of Waterloo
,
Waterloo, ON, Canada
.
62.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
63.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R. L.
,
Sammakia
,
B. G.
, and
Yovanovich
,
M. M.
,
1988
,
Buoyancy-Induced Flows and Transport
,
Hemisphere
,
New York
.
64.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
65.
Acrivos
,
A.
,
1960
, “
A Theoretical Analysis of Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids
,”
AIChE J.
,
6
(
4
), pp.
584
590
.10.1002/aic.690060416
66.
Stewart
,
W. E.
,
1971
, “
Asymptotic Calculation of Free Convection in Laminar Three-Dimensional Systems
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1013
1031
.10.1016/0017-9310(71)90200-6
67.
Raithby
,
G.
, and
Hollands
,
K.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems
,”
Adv. Heat Transfer
,
11
, pp.
265
315
.10.1016/S0065-2717(08)70076-5
68.
Churchill
,
S. W.
, and
Churchill
,
R. U.
,
1975
, “
A Comprehensive Correlating Equation for Heat and Component Transfer by Free Convection
,”
AIChE J.
,
21
(
3
), pp.
604
606
.10.1002/aic.690210330
You do not currently have access to this content.