Abstract

The thermal variation during the temperature rise process of batteries is closely related to multiple physical parameters. Establishing a direct relationship between these parameters and thermal runaway (TR) features under abusive conditions is challenging using theoretical equations due to complex electrochemical and thermal coupling. In this paper, a high-temperature thermal runaway model of pouch-type lithium-ion battery is established through electrical-thermal coupled approach, demonstrating a good agreement between the simulation and experimental results. The results reveal distinct trends in thermal parameters of the early temperature rise, trigger time for TR, and peak temperature during TR process, for varying convective heat transfer coefficient, cell specific heat capacity, cell density, and cell thermal conductivity. Across various convective heat transfer coefficients, the rates of temperature increase, moments of TR, and peak temperatures within a battery emerge as the cumulative outcomes of competing processes of the intricate exothermic secondary reactions within the battery, and the heat transfer with the surroundings. Batteries with lower heat capacity exhibit reduced thermal inertia and heightened sensitivity to temperature changes. Alterations in the thermal capacity of a battery wield a profoundly significant impact upon the moment of thermal runaway within the battery. Enhancing the thermal conductivity yields limited improvements in heat dissipation during thermal runaway primarily due to the relatively small geometrical scale of the battery. Results of this paper can provide valuable insights for size optimization design, thermal management system optimization design, thermal runaway safety warning, and prevention of Lithium-ion batteries.

References

1.
Zhang
,
H.
,
Zhao
,
H.
,
Khan
,
M. A.
,
Zou
,
W.
,
Xu
,
J.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2018
, “
Recent Progress in Advanced Electrode Materials, Separators and Electrolytes for Lithium Batteries
,”
J. Mater. Chem. A
,
6
(
42
), pp.
20564
20620
.10.1039/C8TA05336G
2.
Hu
,
G.
,
Liao
,
C.
, and
Zhang
,
W.
,
2021
, “
A Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicle
,”
Adv. Technol. Electr. Eng. Energy
,
40
(
2
), pp.
66
80
.10.12067/ATEEE2009011
3.
Chang
,
B.
,
Li
,
Y.
,
Ma
,
Z.
,
Wang
,
D.
, and
Zhang
,
J.
,
2020
, “
Study on Thermal Performance of NCM Lithium Ion Power Batteries
,”
Chin. J. Power Sources
,
44
(
12
), pp.
1729
1739
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1002-087X.2020.12.005
4.
Balakrishnan
,
P. G.
,
Ramesh
,
R.
, and
Prem
,
Kumar
,
T.
,
2006
, “
Safety Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
155
(
2
), pp.
401
414
.10.1016/j.jpowsour.2005.12.002
5.
Hu
,
S.
,
Wang
,
S.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Review on Thermal Runaway Risk for Li-Ion Battery
,”
Battery Bimon.
,
52
(
1
), pp.
96
100
.https://link.oversea.cnki.net/doi/10.19535/j.1001-1579.2022.01.023
6.
Meng
,
L.
,
2022
, “
Research and Analysis of Electric Vehicle Fire Accidents and Review of Lithium-Ion Battery Thermal Runaway Mechanism
,”
Int. J. New Dev. Eng. Soc.
,
6
(
2.0
), pp.
6
14
.10.25236/IJNDES.2022.060202
7.
Liu
,
G.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Liang
,
J.
, and
Han
,
X.
,
2013
, “
Online Estimation of Internal Temperature Fields of Lithium-Ion Batteries Using a Transfer Function
,”
J. Automot. Saf. Energy
,
1
, pp.
61
66
.
8.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), p.
A755
.10.1149/1.1377592
9.
Gupta
,
R.
,
Bahga
,
S. S.
, and
Gupta
,
A.
,
2023
, “
Effect of Ambient Temperature and Discharge Current on Thermo-Electrochemical Behaviour of Lithium-Ion Cells Using Surrogate Modelling and Analysis
,”
J. Electrochem. Soc.
,
170
(
6
), p.
060526
.10.1149/1945-7111/acd965
10.
Sun
,
Z.
,
Fan
,
R.
, and
Zheng
,
N.
,
2021
, “
Thermal Management of a Simulated Battery With the Compound Use of Phase Change Material and Fins: Experimental and Numerical Investigations
,”
Int. J. Therm. Sci.
,
165
, p.
106945
.10.1016/j.ijthermalsci.2021.106945
11.
Morali
,
U.
,
2022
, “
A Numerical and Statistical Implementation of a Thermal Model for a Lithium-Ion Battery
,”
Energy
,
240
, p.
122486
.10.1016/j.energy.2021.122486
12.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Transient Electrochemical Heat Transfer Modeling and Experimental Validation of a Large Sized LiFePO4/Graphite Battery
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1239
1251
.10.1016/j.ijheatmasstransfer.2017.03.005
13.
Zhang
,
X.
,
Li
,
P.
,
Huang
,
B.
, and
Zhang
,
H.
,
2022
, “
Numerical Investigation on the Thermal Behavior of Cylindrical Lithium-Ion Batteries Based on the Electrochemical-Thermal Coupling Model
,”
Int. J. Heat Mass Transfer
,
199
, p.
123449
.10.1016/j.ijheatmasstransfer.2022.123449
14.
Zhang
,
H.
,
Li
,
C.
,
Zhang
,
R.
,
Lin
,
Y.
, and
Fang
,
H.
,
2020
, “
Thermal Analysis of a 6s4p Lithium-Ion Battery Pack Cooled by Cold Plates Based on a Multi-Domain Modeling Framework
,”
Appl. Therm. Eng.
,
173
(
C
), pp.
115216
115216
.10.1016/j.applthermaleng.2020.115216
15.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wu
,
P.
,
Kulp
,
C.
, and
Prasser
,
S.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25Ah LiNixCoyMnzO2 Large Format Lithium Ion Battery
,”
Appl. Energy
,
154
, pp.
74
91
.10.1016/j.apenergy.2015.04.118
16.
Jin
,
B.
,
Liu
,
F.
,
Zhang
,
J.
, and
An
,
Z.
,
2017
, “
Correlation Analysis on Heat Dissipation Influence Factors for Power Lithiumion Battery Based on Fuzzy-Grey Theory
,”
Mach. Des. Res.
,
33
(
2
), pp.
176
179
.10.13952/j.cnki.jofmdr.2017.0134].
17.
Acar
,
C.
,
Hüseyin
,
C.
,
Sinan
,
G.
,
Mehmet
,
A.
,
Aytac
,
G.
, and
Aytunc
,
E.
,
2019
, “
Passive Thermal Management of the Lithium‐Ion Battery Unit for a Solar Racing Car
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3681
3691
.10.1002/er.4521
18.
Shah
,
K.
,
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostane
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Modeling of Steady-State Convective Cooling of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
258
, pp.
374
381
.10.1016/j.jpowsour.2014.01.115
19.
Li
,
H.
,
Saini
,
A.
,
Liu
,
C.
,
Yang
,
J.
,
Wang
,
Y.
,
Yang
,
T.
,
Pan
,
C.
,
Chen
,
L.
, and
Jiang
,
H.
,
2021
, “
Electrochemical and Thermal Characteristics of Prismatic Lithium-Ion Battery Based on a Three-Dimensional Electrochemical-Thermal Coupled Model
,”
J. Energy Storage
,
42
, p.
102976
.10.1016/j.est.2021.102976
20.
Kang
,
J.
,
Jia
,
Y.
,
Zhu
,
G.
,
Wang
,
J.
,
Huang
,
B.
, and
Fan
,
Y.
,
2022
, “
How Electrode Thicknesses Influence Performance of Cylindrical Lithium-Ion Batteries
,”
J. Energy Storage
,
46
, p.
103827
.10.1016/j.est.2021.103827
21.
Li
,
Y.
,
Wang
,
W.
,
Lin
,
C.
,
Yang
,
X.
, and
Zuo
,
F.
,
2020
, “
Multi-Physics Safety Model Based on Structure Damage for Lithium-Ion Battery Under Mechanical Abuse
,”
J. Cleaner Prod.
,
277
, p.
124094
.10.1016/j.jclepro.2020.124094
22.
Wang
,
L.
,
Niu
,
J.
,
Zhao
,
W.
,
Li
,
G.
, and
Zhao
,
X.
,
2019
, “
Study on Electrochemical and Thermal Characteristics of Lithium‐Ion Battery Using the Electrochemical‐Thermal Coupled Model
,”
Int. J. Energy Res.
,
43
(
6
), pp.
2086
2107
.10.1002/er.4410
23.
Shah
,
K.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-Ion Cells
,”
J. Power Sources
,
330
, pp.
167
174
.10.1016/j.jpowsour.2016.08.133
24.
Qi
,
C.
,
Zhu
,
Y.
,
Gao
,
F.
,
Yang
,
K.
, and
Jiao
,
Q.
,
2018
, “
Mathematical Model for Thermal Behavior of Lithium Ion Battery Pack Under Overcharge
,”
Int. J. Heat Mass Transfer
,
124
, pp.
552
563
.10.1016/j.ijheatmasstransfer.2018.03.100
25.
Qi
,
C.
,
Kwong
,
N.
,
Zhang
,
Y.
,
Fang
,
R.
,
Pui
,
Z.
, and
Zhao
,
G.
,
2021
, “
Simulation Study on the Thermal Propagation Behavior of High Energy Density Lithium-Ion Battery Module
,”
High Voltage Eng.
,
47
(
7
), pp.
2633
2643
.https://link.oversea.cnki.net/doi/10.13336/j.1003-6520.hve.20201049
26.
Huang
,
P.
,
Chen
,
H.
,
Verma
,
A.
,
Wang
,
Q.
,
Mukherjee
,
P.
, and
Sun
,
J.
,
2019
, “
Non-Dimensional Analysis of the Criticality of Li-Ion Battery Thermal Runaway Behavior
,”
J. Hazard. Mater.
,
369
, pp.
268
278
.10.1016/j.jhazmat.2019.01.049
27.
An
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, “
Modeling and Analysis of Thermal Runaway in Li-Ion Cell
,”
Appl. Therm. Eng.
,
160
, p.
113960
.10.1016/j.applthermaleng.2019.113960
28.
Chakraborty
,
D.
,
Gupta
,
R.
, and
Gupta
,
A.
,
2024
, “
Coupled Electrochemical-Thermal Runaway Model of Lithium-Ion Cells Operating Under High Ambient Temperatures
,”
J. Electrochem. Soc.
,
171
(
8
), p.
080525
.10.1149/1945-7111/ad6cfe
29.
Newman
,
J. S.
, and
Tobias
,
C. W.
,
1962
, “
Theoretical Analysis of Current Distribution in Porous Electrodes
,”
J. Electrochem. Soc.
,
109
(
12
), p.
1183
.10.1149/1.2425269
30.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
31.
Doyle
,
M.
, and
Newman
,
J.
,
1995
, “
The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems
,”
Electrochim. Acta
,
40
(
13–14
), pp.
2191
2196
.10.1016/0013-4686(95)00162-8
32.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Wang
,
L.
,
Lu
,
L.
,
Ren
,
D.
, and
Santhanagopalan
,
S.
,
2018
, “
A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3748
A3765
.10.1149/2.0311816jes
33.
Cai
,
T.
,
Stefanopoulou
,
A. G.
, and
Siegel
,
B.
,
2019
, “
Modeling Li-Ion Battery Temperature and Expansion Force During the Early Stages of Thermal Runaway Triggered by Internal Shorts
,”
J. Electrochem. Soc.
,
166
(
12
), pp.
A2431
A2443
.10.1149/2.1561910jes
34.
Feng
,
X.
,
2016
, “
Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: Test, Modeling and Prevention
,” Ph.D. dissertation,
Tsinghua University
,
Beijing, China
.
35.
Wu
,
H.
,
Chen
,
S.
,
Chen
,
J.
,
Jin
,
C.
,
Xu
,
C.
,
Rui
,
X.
,
Hsu
,
H.
,
Zheng
,
Y.
, and
Feng
,
X.
,
2022
, “
Dimensionless Normalized Concentration Based Thermal-Electric Regression Model for the Thermal Runaway of Lithium-Ion Batteries
,”
J. Power Sources
,
521
, p.
230958
.10.1016/j.jpowsour.2021.230958
36.
Liu
,
B.
,
Sun
,
X.
,
Dong
,
S.
,
Ma
,
H.
, and
Zeng
,
T.
,
2023
, “
Characteristic Analysis of Open Circuit Voltage Curve of LiFePO4 Battery Energy Research and Management
,”
Energy Research and Management
,
15
(
1
), pp.
95
101
.https://link.oversea.cnki.net/doi/10.16056/j.2096-7705.2023.01.013
37.
Li
,
Y.
,
2024
, “
Study on the Correlation of Discharge Curve Fitting Coefficients and Residual Capacity of Different Capacity Lithium Batteries
,” M.S. thesis,
Northeast Petroleum University
,
China
.
38.
Kim
,
G.
,
Pesaran
,
A.
, and
Spotnitz
,
P.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.10.1016/j.jpowsour.2007.04.018
39.
Feng
,
X.
,
Fang
,
M.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wang
,
H.
, and
Zhang
,
M.
,
2014
, “
Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry
,”
J. Power Sources
,
255
, pp.
294
301
.10.1016/j.jpowsour.2014.01.005
40.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.10.1016/j.ensm.2017.05.013
41.
Wang
,
G.
,
Kong
,
D.
,
Ping
,
P.
, and
Lv
,
H.
,
2022
, “
Thermal Runaway Modeling of Lithium-Ion Batteries: A Review
,”
J. Electr. Eng.
,
17
(
4
), pp.
61
71
.10.11985/2022.04.008
42.
He
,
C.
,
Yue
,
Q.
,
Wu
,
M.
,
Chen
,
Q.
, and
Zhao
,
T.
,
2021
, “
A 3D Electrochemical-Thermal Coupled Model for Electrochemical and Thermal Analysis of Pouch-Type Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
181
, p.
121855
.10.1016/j.ijheatmasstransfer.2021.121855
43.
Goutam
,
S.
,
Nikolian
,
A.
,
Jaguemont
,
J.
,
Smekens
,
J.
,
Omar
,
N.
,
Bossche
,
P.
, and
Mierlo
,
J.
,
2017
, “
Three-Dimensional Electro-Thermal Model of li-Ion Pouch Cell: Analysis and Comparison of Cell Design Factors and Model Assumptions
,”
Appl. Therm. Eng.
,
126
, pp.
796
808
.10.1016/j.applthermaleng.2017.07.206
44.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
The Effect of Electrode Design Parameters on Battery Performance and Optimization of Electrode Thickness Based on the Electrochemical-Thermal Coupling Model
,”
Sustainable Energy Fuels
,
3
(
1
), pp.
148
165
.10.1039/C8SE00503F
45.
Mei
,
W.
,
Duan
,
Q.
,
Lu
,
W.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
An Investigation on Expansion Behavior of Lithium Ion Battery Based on the Thermal-Mechanical Coupling Model
,”
J. Cleaner Prod.
,
274
, p.
122643
.10.1016/j.jclepro.2020.122643
46.
Coman
,
P.
,
Darcy
,
E.
,
Veje
,
C.
, and
White
,
R.
,
2017
, “
Modelling li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A587
A593
.10.1149/2.0341704jes
47.
Kong
,
D.
,
Wang
,
G.
,
Ping
,
P.
, and
Wen
,
J.
,
2022
, “
A Coupled Conjugate Heat Transfer and CFD Model for the Thermal Runaway Evolution and Jet Fire of 18650 Lithium-Ion Battery Under Thermal Abuse
,”
Etransportation
,
12
, p.
100157
.10.1016/j.etran.2022.100157
48.
Zhao
,
R.
,
Lai
,
Z.
,
Li
,
W.
,
Ye
,
M.
, and
Yu
,
S.
,
2023
, “
Development of a Coupled Model of Heat Generation and Jet Flow of Lithium-Ion Batteries During Thermal Runaway
,”
J. Energy Storage
,
63
, p.
107048
.10.1016/j.est.2023.107048
49.
Yayathi
,
S.
,
Walker
,
W.
,
Doughty
,
D.
, and
Ardebili
,
H.
,
2016
, “
Energy Distributions Exhibited During Thermal Runaway of Commercial Lithium Ion Batteries Used for Human Spaceflight Applications
,”
J. Power Sources
,
329
, pp.
197
206
.10.1016/j.jpowsour.2016.08.078
50.
Liu
,
P.
,
Sun
,
H.
,
Qiao
,
Y.
,
Sun
,
S.
,
Wang
,
C.
,
Jin
,
K.
,
Mao
,
B.
, and
Wang
,
Q.
,
2022
, “
Experimental Study on the Thermal Runaway and Fire Behavior of LiNi0. 8Co0. 1Mn0. 1O2 Battery in Open and Confined Spaces
,”
Process Saf. Environ. Prot.
,
158
, pp.
711
726
.10.1016/j.psep.2021.12.056
51.
Hammami
,
A.
,
Raymond
,
N.
, and
Armand
,
M.
,
2003
, “
Runaway Risk of Forming Toxic Compounds
,”
Nature
,
424
(
6949
), pp.
635
636
.10.1038/424635b
52.
Tanaka
,
N.
, and
Bessler
,
W. G.
,
2014
, “
Numerical Investigation of Kinetic Mechanism for Runaway Thermo-Electrochemistry in Lithium-Ion Cells
,”
Solid State Ionics
,
262
, pp.
70
73
.10.1016/j.ssi.2013.10.009
53.
Spotnitz
,
R.
, and
Franklin
,
J.
,
2003
, “
Abuse Behavior of High-Power Lithium-Ion Cells
,”
J. Power Sources
,
113
(
1
), pp.
81
100
.10.1016/S0378-7753(02)00488-3
54.
Wang
,
Y. X.
,
Nakamura
,
S.
,
Tasaki
,
K.
, and
Balbuena
,
P. B.
,
2002
, “
Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive
,”
J. Am. Chem. Soc.
,
124
(
16
), pp.
4408
4421
.10.1021/ja017073i
55.
MacNeil
,
D. D.
,
Larcher
,
D.
, and
Dahn
,
J. R.
,
1999
, “
Comparison of the Reactivity of Various Carbon Electrode materials With Electrolyte at Elevated Temperature
,”
J. Electrochem. Soc.
,
146
(
10
), pp.
3596
3602
.10.1149/1.1392520
You do not currently have access to this content.