Abstract

This work presents the thermal runaway propagation model LIM1TR (Lithium-ion Modeling with 1-D Thermal Runaway) as an efficient tool to predict different cell-to-cell thermal runaway propagation scenarios. We explored the vent gas volume production and reaction duration highlighting the relationship between these parameters and thermal runaway propagation due to convection by the vented gases. Two metrics based on gas production rate and heating rate are utilized as good indicators of the start and end of thermal runaway. LIM1TR results are compared with and validated by experiments from the literature for single-cell and multicell array experiments of 5 Ah and 10 Ah cells. By accounting for intraparticle diffusion of reacting species in the electrodes, we were able to capture the general dynamics of thermal runaway propagation and estimate acceptable reaction durations compared with the experimental values. Simulation results further demonstrated that varying heating modes lead to distinct reaction durations, consistent with experimental observations. Vent gas volume predictions indicate the need to consider both full and partial oxidation of the electrolyte. The outcomes of this work are building blocks for further investigations of module-to-module propagation by vented gases through convective heat transfer.

References

1.
Kim
,
D. K.
,
Yoneoka
,
S.
,
Banatwala
,
A. Z.
,
Kim
,
Y.-T.
, and
Nam
,
K.
,
2018
, “
Handbook on Battery Energy Storage System
,” Asian Development Bank: Manila, Philippines, accessed Dec. 2018, https://www.adb.org/publications/battery-energy-storage-system-handbook
2.
EIA
,
U.
,
2020
, “
Battery Storage in the United States: An Update on Market Trends
,”
US Energy Information Administration (EIA)
, Washington, D.C.
3.
EIA, 2023, “
Electricity Explained: Energy Storage for Electricity Generation
,” U.S. Energy Information Administration, Washington, DC, accessed Mar. 2023, https://www.eia.gov/energyexplained/electricity/energy-storage-for-electricity-generation.php
4.
KION, 2021, “
Battery Modules “Overheat” at Vistra's Moss Landing Energy Storage Facility
,” KION, Monterey, CA, accessed Sept. 2018, https://kion546.com/news/top-stories/2021/09/06/battery-modules-overheat-at-vistras-moss-landing-energy-storage-facility/
5.
Wagman
,
D.
,
2020
, “
Dispute Erupts Over What Sparked an Explosive Li-Ion Energy Storage Accident
,” IEEE Spectrum, NewYork, accessed Aug. 10, 2020, https://spectrum.ieee.org/dispute-erupts-over-what-sparked-an-explosive-liion-energy-storage-accident
6.
Hill
,
D.
,
2020
,
McMicken Battery Energy Storage System Event: Technical Analysis and Recommendations
,
DNV GL Energy Insights USA, Incorporated
, Dallas, TX.
7.
InfoLink, 2021 “
Fires Raise Concern Over Energy Storage Battery Safety in South Korea
,” InfoLink, Taipei City, Taiwan, accessed Aug. 12, 2021, https://www.infolink-group.com/en/storage/energy-storage-market-trends/fires-raise-concern-over-energy-storage-battery-safety-in-south-korea
8.
Deign
,
J.
,
2017
, “
Engie Investigates Source of Belgian Battery Blaze
,” Greentech Media, Boston, MA, accessed Dec. 18, 2017, https://www.greentechmedia.com/articles/read/engie-investigates-source-of-belgian-battery-blaze
9.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.10.1016/j.jpowsour.2012.02.038
10.
Diaz
,
L. B.
,
He
,
X.
,
Hu
,
Z.
,
Restuccia
,
F.
,
Marinescu
,
M.
,
Barreras
,
J. V.
,
Patel
,
Y.
,
Offer
,
G.
, and
Rein
,
G.
,
2020
, “
Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090559
.10.1149/1945-7111/aba8b9
11.
Ouyang
,
D.
,
Chen
,
M.
,
Huang
,
Q.
,
Weng
,
J.
,
Wang
,
Z.
, and
Wang
,
J.
,
2019
, “
A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures
,”
Appl. Sci.
,
9
(
12
), p.
2483
.10.3390/app9122483
12.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.10.1016/j.ensm.2017.05.013
13.
Roth
,
E. P.
, and
Orendorff
,
C. J.
,
2012
, “
How Electrolytes Influence Battery Safety
,”
Electrochem. Soc. Interface
,
21
(
2
), pp.
45
49
.10.1149/2.F04122if
14.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
.10.1016/j.pecs.2019.03.002
15.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thaler
,
A.
, and
Hacker
,
V.
,
2014
, “
Thermal-Runaway Experiments on Consumer li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
.10.1039/C3RA45748F
16.
Koch
,
S.
,
Fill
,
A.
, and
Birke
,
K. P.
,
2018
, “
Comprehensive Gas Analysis on Large Scale Automotive Lithium-Ion Cells in Thermal Runaway
,”
J. Power Sources
,
398
, pp.
106
112
.10.1016/j.jpowsour.2018.07.051
17.
Archibald
,
E.
,
Kennedy
,
R.
,
Marr
,
K.
,
Jeevarajan
,
J.
, and
Ezekoye
,
O.
,
2020
, “
Characterization of Thermally Induced Runaway in Pouch Cells for Propagation
,”
Fire Technol.
,
56
(
6
), pp.
2467
2490
.10.1007/s10694-020-00974-2
18.
Essl
,
C.
,
Golubkov
,
A.
, and
Fuchs
,
A.
,
2020
, “
Comparing Different Thermal Runaway Triggers for Two Automotive Lithium-Ion Battery Cell Types
,”
J. Electrochem. Soc.
,
167
(
13
), p.
130542
.10.1149/1945-7111/abbe5a
19.
Zalosh
,
R.
,
Gandhi
,
P.
, and
Barowy
,
A.
,
2021
, “
Lithium-Ion Energy Storage Battery Explosion Incidents
,”
J. Loss Prev. Process Ind.
,
72
, p.
104560
.10.1016/j.jlp.2021.104560
20.
Blum
,
A. F.
, and
Long
, and
R. T.
, Jr.
,
2016
,
Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems
, SpringerBriefs in Fire,
Springer
,
New York
.
21.
Baird
,
A. R.
,
Archibald
,
E. J.
,
Marr
,
K. C.
, and
Ezekoye
,
O. A.
,
2020
, “
Explosion Hazards From Lithium-Ion Battery Vent Gas
,”
J. Power Sources
,
446
, p.
227257
.10.1016/j.jpowsour.2019.227257
22.
Somandepalli
,
V.
,
Marr
,
K.
, and
Horn
,
Q.
,
2014
, “
Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-Ion Batteries
,”
SAE Int. J. Altern. Powertrains
,
3
(
1
), pp.
98
104
.10.4271/2014-01-1857
23.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Steele
,
L. A. M.
, and
Spangler
,
S. W.
,
2015
, “
Failure Propagation in Multi-Cell Lithium Ion Batteries
,”
J. Power Sources
,
283
, pp.
517
523
.10.1016/j.jpowsour.2014.10.081
24.
Torres-Castro
,
L.
,
Kurzawski
,
A.
,
Hewson
,
J.
, and
Lamb
,
J.
,
2020
, “
Passive Mitigation of Cascading Propagation in Multi-Cell Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090515
.10.1149/1945-7111/ab84fa
25.
Li
,
Q.
,
Yang
,
C.
,
Santhanagopalan
,
S.
,
Smith
,
K.
,
Lamb
,
J.
,
Steele
,
L. A.
, and
Torres-Castro
,
L.
,
2019
, “
Numerical Investigation of Thermal Runaway Mitigation Through a Passive Thermal Management System
,”
J. Power Sources
,
429
, pp.
80
88
.10.1016/j.jpowsour.2019.04.091
26.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wu
,
P.
,
Kulp
,
C.
, and
Prasser
,
S.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25 ah linixcoymnzo2 Large Format Lithium Ion Battery
,”
Appl. Energy
,
154
, pp.
74
91
.10.1016/j.apenergy.2015.04.118
27.
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2016
, “
A 3d Thermal Runaway Propagation Model for a Large Format Lithium Ion Battery Module
,”
Energy
,
115
, pp.
194
208
.10.1016/j.energy.2016.08.094
28.
Kim
,
J.
,
Mallarapu
,
A.
,
Finegan
,
D. P.
, and
Santhanagopalan
,
S.
,
2021
, “
Modeling Cell Venting and Gas-Phase Reactions in 18650 Lithium Ion Batteries During Thermal Runaway
,”
J. Power Sources
,
489
, p.
229496
.10.1016/j.jpowsour.2021.229496
29.
Wang
,
G.
,
Ping
,
P.
,
Zhang
,
Y.
,
Zhao
,
H.
,
Lv
,
H.
,
Gao
,
X.
,
Gao
,
W.
, and
Kong
,
D.
,
2023
, “
Modeling Thermal Runaway Propagation of Lithium-Ion Batteries Under Impacts of Ceiling Jet Fire
,”
Process Saf. Environ. Prot.
,
175
, pp.
524
540
.10.1016/j.psep.2023.05.047
30.
Mishra
,
D.
,
Zhao
,
P.
, and
Jain
,
A.
,
2022
, “
Thermal Runaway Propagation in li-Ion Battery Packs Due to Combustion of Vent Gases
,”
J. Electrochem. Soc.
,
169
(
10
), p.
100520
.10.1149/1945-7111/ac91a7
31.
Mishra
,
D.
,
Shah
,
K.
, and
Jain
,
A.
,
2021
, “
Investigation of the Impact of Flow of Vented Gas on Propagation of Thermal Runaway in a li-Ion Battery Pack
,”
J. Electrochem. Soc.
,
168
(
6
), p.
060555
.10.1149/1945-7111/ac0a20
32.
Kurzawski
,
A.
, and
Shurtz
,
R.
,
2019
, “
LIM1TR: Lithium-Ion Modeling With 1-D Thermal Runaway v1.0
,”
Sandia National Lab, (SNL-NM)
, Albuquerque, NM, Rep. No. SAND2021-12281.
33.
Kurzawski
,
A.
, “
Lim1tr: Lithium-Ion Modeling With 1D Thermal Runaway
,” GitHub, San Franciso, CA, accessed Jan. 13, 2025, https://github.com/ajkur/lim1tr
34.
Kennedy
,
R. W.
,
Marr
,
K. C.
, and
Ezekoye
,
O. A.
,
2021
, “
Gas Release Rates and Properties From Lithium Cobalt Oxide Lithium Ion Battery Arrays
,”
J. Power Sources
,
487
, p.
229388
.10.1016/j.jpowsour.2020.229388
35.
Kurzawski
,
A.
,
Torres-Castro
,
L.
,
Shurtz
,
R.
,
Lamb
,
J.
, and
Hewson
,
J. C.
,
2021
, “
Predicting Cell-to-Cell Failure Propagation and Limits of Propagation in Lithium-Ion Cell Stacks
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
4737
4745
.10.1016/j.proci.2020.06.270
36.
Kurzawski
,
A.
,
Gray
,
L.
,
Torres-Castro
,
L.
, and
Hewson
,
J.
,
2023
, “
An Investigation Into the Effects of State of Charge and Heating Rate on Propagating Thermal Runaway in li-Ion Batteries With Experiments and Simulations
,”
Fire Saf. J.
,
140
, p.
103885
.10.1016/j.firesaf.2023.103885
37.
Armstrong
,
E.
,
Hansen
,
M.
, and
McConnell
,
J.
,
2020
, USDOE, Spitfire, Version 1.0, Vol. 2.
38.
Hansen
,
M. A.
,
Hewson
,
J. C.
,
Armstrong
,
E.
,
McConnell
,
J. T.
,
Sutherland
,
J. C.
, and
Knaus
,
R. C.
,
2022
, Spitfire v1.02.01.
39.
Richard
,
M.
, and
Dahn
,
J.
,
1999
, “
Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental
,”
J. Electrochem. Soc.
,
146
(
6
), pp.
2068
2077
.10.1149/1.1391893
40.
Shurtz
,
R. C.
,
Engerer
,
J. D.
, and
Hewson
,
J. C.
,
2018
, “
Predicting High-Temperature Decomposition of Lithiated Graphite: Part I. Review of Phenomena and a Comprehensive Model
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3878
A3890
.10.1149/2.0541816jes
41.
Shurtz
,
R. C.
,
Engerer
,
J. D.
, and
Hewson
,
J. C.
,
2018
, “
Predicting High-Temperature Decomposition of Lithiated Graphite: Part II. Passivation Layer Evolution and the Role of Surface Area
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3891
A3902
.10.1149/2.0171814jes
42.
MacNeil
,
D.
, and
Dahn
,
J. R.
,
2002
, “
The Reactions of Li0.5CoO2 With Nonaqueous Solvents at Elevated Temperatures
,”
J. Electrochem. Society
,
149
(
7
), p.
A912
.10.1149/1.1483865
43.
Shurtz
,
R. C.
, and
Hewson
,
J. C.
,
2020
, “
Materials Science Predictions of Thermal Runaway in Layered Metal-Oxide Cathodes: A Review of Thermodynamics
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090543
.10.1149/1945-7111/ab8fd9
44.
Shurtz
,
R. C.
,
2020
, “
A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry
,”
J. Electrochem. Soc.
,
167
(
14
), p.
140544
.10.1149/1945-7111/abc7b4
45.
Shurtz
,
R.
,
Kurzawski
,
A.
, and
Hewson
,
J.
,
2022
, “
Competitive Reactions and Heat Transfer Effects Applicable to Thermal Runaway Onset in Lithium-Ion Batteries
,” Materials Research Society
(MRS)
, Honolulu, HI, May 8–13, pp.
1
25
.10.2172/2003001
46.
Johnson
,
N. B.
,
Bhargava
,
B.
,
Chang
,
J.
,
Zaman
,
S.
,
Schubert
,
W.
, and
Albertus
,
P.
,
2023
, “
Assessing the Thermal Safety of a li Metal Solid-State Battery Material Set Using Differential Scanning Calorimetry
,”
ACS Appl. Mater. Interfaces
,
15
(
49
), pp.
57134
57143
.10.1021/acsami.3c13344
47.
Coman
,
P. T.
,
Rayman
,
S.
, and
White
,
R. E.
,
2016
, “
A Lumped Model of Venting During Thermal Runaway in a Cylindrical Lithium Cobalt Oxide Lithium-Ion Cell
,”
J. Power Sources
,
307
, pp.
56
62
.10.1016/j.jpowsour.2015.12.088
48.
Walker
,
R.
, and
Pavía
,
S.
,
2015
, “
Thermal Performance of a Selection of Insulation Materials Suitable for Historic Buildings
,”
Build. Environ.
,
94
, pp.
155
165
.10.1016/j.buildenv.2015.07.033
49.
Qatramez
,
A.
,
Kurzawski
,
A.
,
Hewson
,
J.
,
Parker
,
M.
,
Porter
,
A.
,
Foti
,
D.
, and
Headley
,
A. J.
,
2022
, “
Characterization of Vented Gas Predictions in Lithium-Ion Modeling With 1-D Thermal Runaway (LIM1TR)
,”
ASME
Paper No. HT2022-79560.10.1115/HT2022-79560
You do not currently have access to this content.