Abstract

Central lung cancer presents significant challenges due to its proximity to vital thoracic structures, making traditional treatments often less effective and more harmful. Laser ablation (LA) has emerged as a promising minimally invasive therapy, particularly when enhanced with gold nanorods (GNRs), which possess unique optical properties that amplify the effects of LA. This study introduces a comprehensive optical-thermal-fluid model designed to simulate the spatiotemporal distributions of GNRs and temperature involved in the noninvasive GNR-enhanced LA for central lung cancer. The effects of GNR enhancement on heat transfer and tumor ablation were investigated with regard to three cases of central lung cancer in different sizes and locations. The results demonstrate that GNRs significantly improve the heating efficiency within smaller tumors by concentrating laser energy, thus reducing the time needed to reach therapeutic temperatures. However, in larger tumors, particularly where the tumor size approaches the penetration depth of the laser, the GNRs cause substantial photon absorption near the emission surface, resulting longer treatment durations attributing to heat transfer. Nevertheless, GNRs consistently confine the thermal energy, minimizing damage to surrounding healthy tissue in tumors. This study highlights the potential of GNR-enhanced LA as a noninvasive treatment for central lung cancer. It also underscores the importance of considering tumor size in the treatment planning of GNR-enhanced LA.

References

1.
Siegel
,
R. L.
,
Miller
,
K. D.
,
Wagle
,
N. S.
, and
Jemal
,
A.
,
2023
, “
Cancer Statistics, 2023
,”
Ca-Cancer J. Clin.
,
73
(
1
), pp. 1
7
48
.10.3322/caac.21763
2.
Herbst
,
R. S.
,
Morgensztern
,
D.
, and
Boshoff
,
C.
,
2018
, “
The Biology and Management of Non-Small Cell Lung Cancer
,”
Nature
,
553
(
7689
), pp.
446
454
.10.1038/nature25183
3.
Gesierich
,
W.
,
Reichenberger
,
F.
,
Fertl
,
A.
,
Haeussinger
,
K.
, and
Sroka
,
R.
,
2014
, “
Endobronchial Therapy With a Thulium Fiber Laser (1940 nm)
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
6
), pp.
1827
1832
.10.1016/j.jtcvs.2013.12.038
4.
Cavaliere
,
S.
,
Foccoli
,
P.
,
Toninelli
,
C.
, and
Feijo
,
S.
,
1994
, “
Nd: YAG Laser Therapy in Lung Cancer: An 11-Year Experience With 2,253 Applications in 1,585 Patients
,”
J. Bronchology Interventional Pulmonol.
,
1
(
2
), pp.
105
111
.https://journals.lww.com/bronchology/abstract/1994/04000/Nd__YAG_Laser_Therapy_in_Lung_CancerAn_11_Year.6.aspx
5.
Lakhani
,
P. M.
,
Rompicharla
,
S. V. K.
,
Ghosh
,
B.
, and
Biswas
,
S.
,
2015
, “
An Overview of Synthetic Strategies and Current Applications of Gold Nanorods in Cancer Treatment
,”
Nanotechnology
,
26
(
43
), p.
432001
.10.1088/0957-4484/26/43/432001
6.
Abadeer
,
N. S.
, and
Murphy
,
C. J.
,
2021
, “
Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles
,”
Nanomaterials and Neoplasms
, Jenny Stanford Publishing, Singapore, pp.
143
217
.10.1201/9780429027819
7.
Liang
,
H., Qian, Z., Zhang, H., Luo, Y., Moser, M. A., Zhang, W., and Zhang, B.
,
2024
, “
Computational Modeling With Phantom-Tissue Validation of Gold-Nanorod-Enhanced Laser Ablation of Prostate Cancer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
1
), p.
011004
.10.1115/1.4063651
8.
Bianchi
,
L.
,
Mooney
,
R.
,
Cornejo
,
Y. R.
,
Schena
,
E.
,
Berlin
,
J. M.
,
Aboody
,
K. S.
, and
Saccomandi
,
P.
,
2021
, “
Thermal Analysis of Laser Irradiation-Gold Nanorod Combinations at 808 nm, 940 nm, 975 nm and 1064 nm Wavelengths in Breast Cancer Model
,”
Int. J. Hyperthermia
,
38
(
1
), pp.
1099
1110
.10.1080/02656736.2021.1956601
9.
Knights
,
O.
,
Freear
,
S.
, and
McLaughlan
,
J. R.
,
2020
, “
Improving Plasmonic Photothermal Therapy of Lung Cancer Cells With Anti-EGFR Targeted Gold Nanorods
,”
Nanomaterials
,
10
(
7
), p.
1307
.10.3390/nano10071307
10.
Mooney
,
R.
,
Schena
,
E.
,
Saccomandi
,
P.
,
Zhumkhawala
,
A.
,
Aboody
,
K.
, and
Berlin
,
J. M.
,
2017
, “
Gold Nanorod-Mediated Near-Infrared Laser Ablation: in Vivo Experiments on Mice and Theoretical Analysis at Different Settings
,”
Int. J. Hyperthermia
,
33
(
2
), pp.
150
159
.10.1080/02656736.2016.1230682
11.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
, and
Jackson
,
M.
,
2012
, “
Indirect Heating Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4688
4700
.10.1016/j.ijheatmasstransfer.2012.04.029
12.
Dombrovsky
,
L. A.
,
2022
, “
Laser-Induced Thermal Treatment of Superficial Human Tumors: An Advanced Heating Strategy and Non-Arrhenius Law for Living Tissues
,”
Front. Therm. Eng.
,
1
, p.
807083
.10.3389/fther.2021.807083
13.
Cheong
,
J. K. K.
,
Ooi
,
E. H.
,
Chiew
,
Y. S.
,
Menichetti
,
L.
,
Armanetti
,
P.
,
Franchini
,
M. C.
,
Alchera
,
E.
,
Locatelli
,
I.
,
Canu
,
T.
,
Maturi
,
M.
,
Popov
,
V.
, and
Alfano
,
M.
,
2023
, “
Gold Nanorods Assisted Photothermal Therapy of Bladder Cancer in Mice: A Computational Study on the Effects of Gold Nanorods Distribution at the Centre, Periphery, and Surface of Bladder Cancer
,”
Comput. Methods Programs Biomed.
,
230
, p.
107363
.10.1016/j.cmpb.2023.107363
14.
Soni
,
S.
,
Tyagi
,
H.
,
Taylor
,
R. A.
, and
Kumar
,
A.
,
2013
, “
Role of Optical Coefficients and Healthy Tissue-Sparing Characteristics in Gold Nanorod-Assisted Thermal Therapy
,”
Int. J. Hyperthermia
,
29
(
1
), pp.
87
97
.10.3109/02656736.2012.753162
15.
Singh
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2021
, “
Quantitative Evaluation of Effects of Coupled Temperature Elevation, Thermal Damage, and Enlarged Porosity on Nanoparticle Migration in Tumors During Magnetic Nanoparticle Hyperthermia
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105393
.10.1016/j.icheatmasstransfer.2021.105393
16.
Mahesh
,
N.
,
Singh
,
N.
, and
Talukdar
,
P.
,
2022
, “
A Mathematical Model for Understanding Nanoparticle Biodistribution After Intratumoral Injection in Cancer Tumors
,”
J. Drug Delivery Sci. Technol.
,
68
, p.
103048
.10.1016/j.jddst.2021.103048
17.
Zhang
,
S.
,
Li
,
C.
,
Cao
,
L.
,
Moser
,
M. A. J.
,
Zhang
,
W.
,
Qian
,
Z.
, and
Zhang
,
B.
,
2022
, “
Modeling and Ex Vivo Experimental Validation of Liver Tissue Carbonization With Laser Ablation
,”
Comput. Methods Programs Biomed.
,
217
, p.
106697
.10.1016/j.cmpb.2022.106697
18.
Fang
,
Z.
,
Wu
,
C.
,
Cao
,
L.
,
Wang
,
T.
,
Hong
,
X.
,
Moser
,
M. A. J.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2024
, “
Development of Non-Invasive Flexible Directional Microwave Ablation for Central Lung Cancer: A Simulation Study
,”
Phys. Med. Biol.
,
69
(
9
), p.
09NT04
.10.1088/1361-6560/ad3795
19.
Kho
,
A. S.
,
Ooi
,
E. H.
,
Foo
,
J. J.
, and
Ooi
,
E. T.
,
2022
, “
The Effects of Vaporisation, Condensation and Diffusion of Water Inside the Tissue During Saline-Infused Radiofrequency Ablation of the Liver: A Computational Study
,”
Int. J. Heat Mass Transfer
,
194
, p.
123062
.10.1016/j.ijheatmasstransfer.2022.123062
20.
Liu
,
Y.
, and
Widmer-Cooper
,
A.
,
2021
, “
A Dissipative Particle Dynamics Model for Studying Dynamic Phenomena in Colloidal Rod Suspensions
,”
J. Chem. Phys.
,
154
(
10
), p.
104120
.10.1063/5.0041285
21.
Bashkatov
,
A. N.
,
Genina
,
E. A.
, and
Tuchin
,
V. V.
,
2011
, “
Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review
,”
J. Innovative Opt. Health Sci.
,
04
(
1
), pp.
9
38
.10.1142/S1793545811001319
22.
Jacques
,
S. L.
,
2013
, “
Optical Properties of Biological Tissues: A Review
,”
Phys. Med. Biol.
,
58
(
11
), pp.
R37
R61
.10.1088/0031-9155/58/11/R37
23.
Dombrovsky
,
L. A.
,
2019
, “
Scattering of Radiation and Simple Approaches to Radiative Transfer in Thermal Engineering and Biomedical Applications
,”
Springer Series in Light Scattering
, Springer, Cham, Switzerland, pp.
71
127
.10.1007/978-3-030-20587-4_2
24.
Bashkatov
,
A. N.
,
Genina
,
E. A.
,
Kochubey
,
V. I.
, and
Tuchin
,
V.
,
2005
, “
Optical Properties of Human Skin, Subcutaneous and Mucous Tissues in the Wavelength Range From 400 to 2000 nm
,”
J. Phys. D: Appl. Phys.
,
38
(
15
), p.
2543
.10.1088/0022-3727/38/15/004
25.
Ramadan
,
K. T.
,
McFadden
,
C.
,
Gomes
,
B.
,
Schwiegelshohn
,
F.
,
Ribeiro
,
R. V. P.
,
Chan
,
H. H. L.
,
Betz
,
V.
,
Cypel
,
M.
, and
Lilge
,
L.
,
2021
, “
Determination of Optical Properties and Photodynamic Threshold of Lung Tissue for Treatment Planning of in Vivo Lung Perfusion Assisted Photodynamic Therapy
,”
Photodiagn. Photodyn. Ther.
,
35
, p.
102353
.10.1016/j.pdpdt.2021.102353
26.
Almadi
,
M. A.
,
2014
, “
Optical Properties Measurements of Rat Muscle and Myocardium at 980 and 1860 nm Using Single Integrating Sphere Technique
,” Ph.D. thesis,
University of Miami, Coral Gables
,
FL
.
27.
Dombrovsky
,
L. A.
, and
Randrianalisoa
,
J. H.
,
2024
, “
Absorption of Collimated Incident Radiation in a Semitransparent Strongly Scattering Medium: Computational Analysis and Explanation of Red Algae Blooming in Snow
,”
J. Quant. Spectrosc. Radiat. Transfer
,
320
, p.
108976
.10.1016/j.jqsrt.2024.108976
28.
Dombrovsky
,
L. A.
,
2012
, “
The Use of Transport Approximation and Diffusion-Based Models in Radiative Transfer Calculations
,”
Comput. Therm. Sci.: Int. J.
,
4
(
4
), pp.
297
315
.10.1615/ComputThermalScien.2012005050
29.
Hirohashi
,
K.
,
Anayama
,
T.
,
Wada
,
H.
,
Nakajima
,
T.
,
Kato
,
T.
,
Keshavjee
,
S.
,
Orihashi
,
K.
, and
Yasufuku
,
K.
,
2015
, “
Photothermal Ablation of Human Lung Cancer by Low-Power Near-Infrared Laser and Topical Injection of Indocyanine Green
,”
J. Bronchology Interventional Pulmonol.
,
22
(
2
), pp.
99
106
.10.1097/LBR.0000000000000158
30.
Charny
,
C. K.
,
1992
, “
Mathematical Models of Bioheat Transfer
,”
Adv. Heat Transfer
,
22
, pp.
19
155
.10.1016/S0065-2717(08)70344-7
31.
Karwa
,
R.
, and
Karwa
,
R.
,
2020
, “
Empirical Relations for Forced Convection Heat Transfer
,”
Heat and Mass Transfer
, Springer, Singapore, pp.
565
682
.10.1007/978-981-15-3988-6
32.
Pearce
,
J. A.
,
2013
, “
Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
262
280
.10.3109/02656736.2013.786140
33.
Eltejaei
,
I.
,
Balavand
,
M.
, and
Mojra
,
A.
,
2021
, “
Numerical Analysis of Non-Fourier Thermal Response of Lung Tissue Based on Experimental Data With Application in Laser Therapy
,”
Comput. Methods Programs Biomed.
,
199
, p.
105905
.10.1016/j.cmpb.2020.105905
34.
Pearce
,
J. A.
,
2009
, “
Relationship Between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose
,”
SPIE BIOS
, San Jose, CA, Jan. 24–29, pp.
35
49
.10.1117/12.807999
35.
Rattanadecho
,
P.
, and
Keangin
,
P.
,
2013
, “
Numerical Study of Heat Transfer and Blood Flow in Two-Layered Porous Liver Tissue During Microwave Ablation Process Using Single and Double Slot Antenna
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
457
470
.10.1016/j.ijheatmasstransfer.2012.10.043
36.
Zorbas
,
G.
, and
Samaras
,
T.
,
2014
, “
Simulation of Radiofrequency Ablation in Real Human Anatomy
,”
Int. J. Hyperthermia
,
30
(
8
), pp.
570
578
.10.3109/02656736.2014.968639
You do not currently have access to this content.