Nanostructured one dimensional titanium oxides such as nanotubes and nanowires have raised interest lately due to their unique electronic and optical properties. These materials also have shown significant potential as biomaterials because of their ability to modulate protein and cellular interactions. In this review, synthesis and modification of titania nanotubes have been discussed with emphasis on electrochemical synthesis and wet chemical synthesis and their heat treatment of resulting titania nanotubes. The biomedical applications of titania nanotubes were subsequently discussed in detail with a focus on osseointegration. The areas discussed are cell responses to titania nanotubes, effects of titania nanotubes on stem cell proliferation and differentiation, titania nanotubes as drug delivery vehicles, surface modification of titania nanotubes, and in vivo studies using titania nanotubes. It is concluded that the in vitro and in vivo study clearly demonstrates the efficacy of titania nanotube in enhancing osseointegration of orthopedic implants and much of the future work is expected to focus on improving implant functions by modulating the physical and chemical properties of the nanotubes and by locally delivering bioactive molecules in a sustained manner.

1.
Palsson
,
B.
,
Hubbell
,
J. A.
,
Plonsey
,
R.
, and
Bronzino
,
J. D.
, eds., 2003, “
Tissue Engineering
,”
Principles and Applications
(
Engineering Series
),
CRC
,
Boca Raton, FL
.
2.
Nair
,
L. S.
,
Bhattacharya
,
S.
, and
Laurencin
,
C. T.
, 2006, “
Nanotechnology and Tissue Engineering: The Scaffold Based Approach
,”
Nanotechnologies for Life Sciences, Vol. 8: Nanotechnologies for Tissue, Cell and Organ Engineering
,
C.
Kumar
, ed.,
Wiley
,
New York
, pp.
1
56
.
3.
Puckett
,
S.
,
Pareta
,
R.
, and
Webster
,
T. J.
, 2008, “
Nano Rough Micron Patterned Titanium for Directing Osteoblast Morphology and Adhesion
,”
Int. J. Nanomedicine
1178-2013,
3
, pp.
229
241
.
4.
Laurencin
,
C. T.
, and
Nair
,
L. S.
, 2008,
Nanotechnology and Tissue Engineering: The Scaffold
,
Taylor & Francis
,
London
.
5.
Closkey
,
R. F.
, and
Buly
,
R. L.
, 2001, “
Surgical Exposures in Revision Total Hip Arthroplasty
,”
Tech. Orthop.
,
16
, pp.
222
226
.
6.
Burger
,
N. D. L.
,
de Vaal
,
P. L.
, and
Meyer
,
J. P.
, 2007, “
Failure Analysis on Retrieved Ultra High Molecular Weight Polyethylene (UHMWPE) Acetabular Cups
,”
Eng. Failure Anal.
1350-6307,
14
, pp.
1329
1345
.
7.
Cooper
,
L. F.
, 2000, “
A Role of Surface Topography in Creating and Maintaining Bone at Titanium Endosseous Implants
,”
J. Prosthet. Dent.
0022-3913,
84
, pp.
522
534
.
8.
Le Guehennec
,
L. L.
,
Soueiden
,
A.
,
Layrolle
,
P.
, and
Amouriq
,
Y.
, 2007, “
Surface Treatments of Titanium Dental Implants for Rapid Osseointegration
,”
Dent. Mater.
0109-5641,
23
, pp.
844
854
.
9.
Jonge
,
L. T.
,
Leeuwenburgh
,
S. C. G.
,
Wolke
,
J. G. C.
, and
Janser
,
J. A.
, 2008, “
Organic-Inorganic Surface Modifications for Titanium Implant Surfaces
,”
Pharm. Res.
0724-8741,
25
, pp.
2357
2369
.
10.
Schmidmaier
,
G.
,
Lucke
,
M.
,
Schwabe
,
P.
,
Raschke
,
M.
,
Haas
,
N. P.
, and
Wildemann
,
B.
, 2006, “
Collective Review: Bioactive Implants Beta1 or BMP-2 for Stimulation of Fracture Healing
,”
Journal of Long Term Effects of Medical Implants
1050-6934,
16
, pp.
61
69
.
11.
Webster
,
T. J.
,
Ergan
,
C.
,
Doremus
,
R. H.
,
Siegel
,
R. W.
, and
Bizios
,
R.
, 2000, “
Enhanced Functions of Osteoblasts on Nanophase Ceramics
,”
Biomaterials
0142-9612,
21
, pp.
1803
1810
.
12.
Oh
,
S.
,
Brammer
,
K. S.
,
Li
,
Y. S. L.
,
Teng
,
D.
,
Engler
,
A. J.
,
Chien
,
S.
, and
Jin
,
S.
, 2009, “
Stem Cell Fate Dictated Solely by Altered Nanotube Dimension
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
106
, pp.
2130
2135
.
13.
Jung
,
J. H.
,
Kobayashi
,
H.
,
van Bommel
,
K. J. C.
,
Shinkai
,
S.
, and
Shimizu
,
T.
, 2002, “
Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template
,”
Chem. Mater.
0897-4756,
14
, pp.
1445
1447
.
14.
Kasuga
,
T.
,
Hiramatsu
,
M.
,
Hoson
,
A.
,
Sekino
,
T.
, and
Niihara
,
K.
, 1998, “
Formation of Titanium Oxide Nanotube
,”
Langmuir
0743-7463,
14
, pp.
3160
3163
.
15.
Gong
,
D.
,
Grimes
,
C. A.
,
Varghese
,
O. K.
,
Hu
,
W.
,
Singh
,
R. S.
,
Chen
,
Z.
, and
Dickey
,
E. C.
, 2001, “
Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation
,”
J. Mater. Res.
0884-2914,
16
, pp.
3331
3334
.
16.
Varghese
,
O. K.
,
Gong
,
D.
,
Paulose
,
M.
,
Grimes
,
C. A.
, and
Dickey
,
E. C.
, 2003, “
Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays
,”
J. Mater. Res.
0884-2914,
18
, pp.
156
165
.
17.
Varghese
,
O. K.
,
Paulose
,
M.
,
Shankar
,
K.
,
Mor
,
G. K.
, and
Grimes
,
C. A.
, 2005, “
Water-Photolysis Properties of Micro-Length Highly-Ordered Titanate Nanotubes-Arrays
,”
J. Nanosci. Nanotechnol.
1533-4880,
5
, pp.
1158
1165
.
18.
Chen
,
Q.
,
Zhou
,
W. Z.
,
Du
,
G. H.
, and
Peng
,
L. M.
, 2002, “
Tritanate Nanotubes Made via a Single Alkali Treatment
,”
Adv. Mater.
0935-9648,
14
, pp.
1208
1211
.
19.
Chen
,
Q.
,
Du
,
G. H.
,
Zhang
,
S.
, and
Peng
,
L. M.
, 2002, “
The Structure of Tritinate Nanotubes
,”
Acta Crystallogr. B
,
58
, pp.
587
593
.
20.
Zhang
,
S.
,
Peng
,
L. M.
,
Chen
,
Q.
,
Du
,
G. H.
,
Dawson
,
G.
, and
Zhou
W. Z.
, 2003, “
Formation Mechanism of H2Ti3O7 Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
256103
.
21.
Yang
,
J.
,
Jin
,
Z.
,
Wang
,
X.
,
Li
,
W.
,
Zhang
,
J.
,
Zhang
,
S.
,
Guo
,
X.
, and
Zhang
,
Z.
, 2003, “
Study on Composition, Structure and Formation Process of Nanotube Na2Ti2O4(OH)2
,”
Dalton Trans.
1477-9226,
2003
, pp.
3898
3901
.
22.
Chen
,
X.
, and
Mao
,
S. S.
, 2006, “
Synthesis of Titanium Dioxide Nanomaterials
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
, pp.
906
925
.
23.
Yao
,
C.
, and
Webster
,
T.
, 2006, “
Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopaedic Applications
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
, pp.
2682
2692
.
24.
Mor
,
G. K.
,
Varghese
,
O. K.
,
Paulose
,
M.
,
Shankar
,
K.
, and
Grimes
,
C. A.
, 2006, “
A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties and Solar Energy Applications
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
90
, pp.
2011
2075
.
25.
Beranek
,
R.
,
Hildebrand
,
H.
, and
Schmuki
,
P.
, 2003, “
Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes
,”
Electrochem. Solid-State Lett.
1099-0062,
6
, pp.
B12
B14
.
26.
Macak
,
J. M.
,
Sirotna
,
K.
, and
Schmuki
,
P.
, 2005, “
Self-Organized Porous Titanium Oxide Prepared in Na2SO4/NaF Electrolytes
,”
Electrochim. Acta
0013-4686,
50
, pp.
3679
3684
.
27.
Macak
,
J. M.
,
Tsuchiya
,
H.
,
Taveira
,
L.
, and
Schmuki
,
P.
, 2005, “
Smooth Anodic TiO2 Nanotubes
,”
Angew. Chem., Int. Ed.
1433-7851,
44
, pp.
7463
7465
.
28.
Paulose
,
M.
,
Shankar
,
K.
,
Varghese
,
O. K.
,
Mor
,
G. K.
, and
Grimes
,
C. A.
, 2006, “
Application of Highly-Ordered TiO2 Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells
,”
J. Phys. D: Appl. Phys.
0022-3727,
39
, pp.
2498
2503
.
29.
Mor
,
G. K.
,
Varghese
,
O. K.
,
Paulose
,
M.
, and
Grimes
,
C. A.
, 2005, “
Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films
,”
Adv. Funct. Mater.
1616-301X,
15
, pp.
1291
1296
.
30.
Mor
,
G. K.
,
Shankar
,
K.
,
Paulose
,
M.
,
Varghese
,
O. K.
, and
Grimes
,
C. A.
, 2005, “
Enhanced Photocleavage of Water Using Titania Nanotube Arrays
,”
Nano Lett.
1530-6984,
5
, pp.
191
195
.
31.
Allam
,
N. K.
,
Shankar
,
K.
, and
Grimes
,
C. A.
, 2008, “
A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays Without the Use of Thermal Annealing
,”
Adv. Mater.
0935-9648,
20
, pp.
3942
3946
.
32.
Ou
,
H. -H.
, and
Lo
,
S. -L.
, 2007, “
Review of Titania Nanotubes Synthesized via the Hydrothermal Treatment: Fabrication, Modification, and Application
,”
Separ. Purif. Technol.
,
58
, pp.
179
191
.
33.
Seo
,
S.
,
Kim
,
J. K.
, and
Kim
,
H.
, 2001, “
Preparation of Nanotube-Shaped TiO2 Powder
,”
J. Cryst. Growth
0022-0248,
229
, pp.
428
432
.
34.
Poudel
,
B.
,
Wang
,
W. Z.
,
Dames
,
C.
,
Huang
,
J. Y.
,
Kunwar
,
S.
,
Wang
,
D. Z.
,
Banerjee
,
D.
,
Chen
,
G.
, and
Ren
,
Z. F.
, 2005, “
Formation of Crystallized Titania Nanotubes and Their Transformation Into Nanowires
,”
Nanotechnology
0957-4484,
16
, pp.
1935
1940
.
35.
Yoshida
,
R.
,
Suzuki
,
Y.
, and
Yoshikawa
,
S.
, 2005, “
Effects of Synthetic Conditions and Heat-Treatment on the Structure of Partially Ion-Exchanged Titanate Nanotubes
,”
Mater. Chem. Phys.
0254-0584,
91
, pp.
409
416
.
36.
Tsai
,
C. C.
, and
Teng
,
H.
, 2004, “
Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized From Hydrothermal Treatment
,”
Chem. Mater.
0897-4756,
16
, pp.
4352
4358
.
37.
Yu
,
J.
,
Yu
,
H.
,
Cheng
,
B.
,
Zhao
,
X.
, and
Zhang
,
Q.
, 2006, “
Preparation and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanofibers by a Hydrothermal Method
,”
J. Photochem. Photobiol., A
1010-6030,
182
, pp.
121
127
.
38.
Yuan
,
Z. Y.
,
Colomer
,
J. F.
, and
Su
,
B. L.
, 2002, “
Titanium Oxide Nanoribbons
,”
Chem. Phys. Lett.
0009-2614,
363
, pp.
362
366
.
39.
Zhu
,
H. Y.
,
Lan
,
Y.
,
Gao
,
X. P.
,
Ringer
,
S. P.
,
Zheng
,
R. F.
,
Song
,
D. Y.
, and
Zhao
,
J. C.
, 2005, “
Phase Transition Between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions
,”
J. Am. Chem. Soc.
0002-7863,
127
, pp.
6730
6736
.
40.
Oh
,
S.
,
Daraio
,
C.
,
Chen
,
L. H.
,
Pisanic
,
T. R.
,
Finones
,
R. R.
, and
Jin
,
S.
, 2006, “
Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes
,”
J. Biomed. Mater. Res. Part A
1549-3296,
78A
, pp.
97
103
.
41.
Yao
,
C.
,
Perla
,
V.
,
McKenzie
,
J.
,
Slamovich
,
E. B.
, and
Webster
,
T. J.
, 2005, “
Anodized Ti and Ti6Al4V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion
,”
J Biomed Nanotechnol
,
1
, pp.
68
73
.
42.
Burns
,
K.
,
Yao
,
C.
, and
Webster
,
T. J.
, 2009, “
Increased Chondrocyte Adhesion on Nanotubular Anodized Titanium
,”
J. Biomed. Mater. Res. Part A
1549-3296,
88A
, pp.
561
568
.
43.
Brammer
,
K. S.
,
Oh
,
S.
,
Gallangher
,
J. O.
, and
Jin
,
S.
, 2008, “
Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces
,”
Nano Lett.
1530-6984,
8
, pp.
786
793
.
44.
Popat
,
K. C.
,
Eltgroth
,
M.
,
LaTempa
,
T. J.
,
Grimes
,
C. A.
, and
Desai
,
T. A.
, 2007, “
Decreased Staphylococcus Epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes
,”
Biomaterials
0142-9612,
28
, pp.
4880
4888
.
45.
Balasundaram
,
G.
,
Yao
,
C.
, and
Webster
,
T. J.
, 2008, “
TiO2 Nanotubes Functionalized With Regions of Bone Morphogenetic Protein-2 Increases Osteoblast Adhesion
,”
J. Biomed. Mater. Res. Part A
1549-3296,
84A
, pp.
447
453
.
46.
Park
,
J.
,
Bauer
,
S.
,
Mark
,
K. V.
, and
Schmuki
,
P.
, 2007, “
Nanosize and Vitality: TiO2 Diameter Directs Cell Fate
,”
Nano Lett.
1530-6984,
7
, pp.
1686
1691
.
47.
Park
,
J.
,
Bauer
,
S.
,
Schlegel
,
K. A.
,
Neukam
,
F. W.
,
Mark
,
K. V.
, and
Schmuki
,
P.
, 2009, “
TiO2 Nanotube Surfaces: 15 nm—An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation
,”
Small
1613-6810,
5
, pp.
666
671
.
48.
Hendriks
,
J. G.
,
van Horn
,
J. R.
,
van der Mei
,
H. C.
, and
Busscher
,
H.
, 2004, “
Backgrounds of Antibiotic Loaded Bone Cement and Prosthesis Related Infection
,”
Biomaterials
0142-9612,
25
, pp.
545
556
.
49.
Popat
,
K. C.
,
Eltgroth
,
M.
,
LaTempa
,
T. J.
,
Grimes
,
C. A.
, and
Desai
,
T. A.
, 2007, “
Titania Nanotubes: A Novel Platform for Drug Eluting Coatings for Medical Implants
,”
Small
1613-6810,
3
, pp.
1878
1881
.
50.
Bauer
,
S.
,
Park
,
J.
,
von der Mark
,
K.
, and
Schmuki
,
P.
, 2008, “
Improved Attachment of Mesenchymal Stem Cells on Super-Hydrophobic TiO2 Nanotubes
,”
Acta Biomater.
1742-7061,
4
, pp.
1576
1582
.
51.
Von Wilmowsky
,
C.
,
Bauer
,
S.
,
Lutz
,
R.
,
Meisel
,
M.
,
Neukam
,
F. W.
,
Toyoshima
,
T.
,
Schmuki
,
P.
,
Nkenke
,
E.
, and
Schlegel
,
K. A.
, 2009, “
In Vivo Evaluation of Anodic TiO2 Nanotubes: An Experimental Study in the Pig
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
89B
, pp.
165
171
.
52.
Bjursten
,
L. M.
,
Rasmusson
,
L.
,
Oh
,
S.
,
Smith
,
G. C.
,
Brammer
,
K. S.
, and
Jin
,
S.
, 2010, “
Titanium Dioxide Nanotubes Enhance Bone Bonding In Vivo
,”
J. Biomed. Mater. Res. Part A
1549-3296,
92
(
3
), pp.
1218
-
1224
.
You do not currently have access to this content.