Porous structures formed by sintering of powders, which involves material-bonding under the application of heat, are commonly employed as capillary wicks in two-phase heat transport devices such as heat pipes. These sintered wicks are often fabricated in an ad hoc manner, and their microstructure is not optimized for fluid and thermal performance. Understanding the role of sintering kinetics—and the resulting microstructural evolution—on wick transport properties is important for fabrication of structures with optimal performance. A cellular automaton model is developed in this work for predicting microstructural evolution during sintering. The model, which determines mass transport during sintering based on curvature gradients in digital images, is first verified against benchmark cases, such as the evolution of a square shape into an area-preserving circle. The model is then employed to predict the sintering dynamics of a side-by-side, two-particle configuration conventionally used for the study of sintering. Results from previously published studies on sintering of cylindrical wires are used for validation. Randomly packed multiparticle configurations are then considered in two and three dimensions. Sintering kinetics are described by the relative change in overall surface area of the compact compared to the initial random packing. The effect of sintering parameters, particle size, and porosity on fundamental transport properties, viz., effective thermal conductivity and permeability, is analyzed. The effective thermal conductivity increases monotonically as either the sintering time or temperature is increased. Permeability is observed to increase with particle size and porosity. As sintering progresses, the slight increase observed in the permeability of the microstructure is attributed to a reduction in the surface area.

References

1.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
2.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
3.
Wang
,
D.
,
Yu
,
E.
, and
Przekwas
,
A.
,
1999
, “
A Computational Study of Two Phase Jet Impingement Cooling of an Electronic Chip
,”
Proceedings of Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, SEMI-THERM, Piscataway, NJ, pp.
10
15
.
4.
Harichian
,
T.
, and
Garimella
,
S. V.
,
2013
,
Microchannel Heat Sinks for Electronics Cooling
,
World Scientific
,
Singapore
.
5.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
Washington, DC
.
6.
Dunn
,
P. D.
, and
Reay
,
D. A.
,
1973
, “
The Heat Pipe
,”
Phys. Technol.
,
4
, p.
187
.10.1088/0305-4624/4/3/I01
7.
Garimella
,
S. V.
,
Joshi
,
Y. K.
,
Bar-Cohen
,
A.
,
Mahajan
,
R.
,
Toh
,
K. C.
,
Carey
,
V. P.
,
Baelmans
,
M.
,
Lohan
,
J.
,
Sammakia
,
B.
, and
Andros
,
F.
,
2003
, “
Thermal Challenges in Next Generation Electronic Systems-Summary of Panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
569
575
.10.1109/TCAPT.2003.809113
8.
Dullien
,
F. A. L.
,
1979
,
Porous media, Fluid Transport and Pore Structure
,
Academic
,
New York
.
9.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Direct Simulation of Thermal Transport Through Sintered Wick Microstructures
,”
ASME J. Heat Transfer
,
134
(
1
), p.
012602
.10.1115/1.4004804
10.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2013
, “
Evaporation Analysis in Sintered Wick Microstructures
,”
Int. J. Heat Mass Transfer
,
61
, pp.
729
741
.10.1016/j.ijheatmasstransfer.2013.02.038
11.
Bodla
,
K. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
, “
Advances in Fluid and Thermal Transport Property Analysis and Design of Sintered Porous Wick Microstructures
,”
ASME J. Heat Transfer
,
135
(6), p.
061202
.10.1115/1.4023569
12.
German
,
R. M.
,
1996
,
Sintering Theory and Practice
,
John Wiley and Sons
,
New York
.
13.
Wakai
,
F.
,
2006
, “
Modeling and Simulation of Elementary Processes in Ideal Sintering
,”
J. Am. Ceram. Soc.
,
89
(
5
), pp.
1471
1484
.10.1111/j.1551-2916.2006.01001.x
14.
Wakai
,
F.
, and
Aldinger
,
F.
,
2003
, “
Sintering Through Surface Motion by the Difference in Mean Curvature
,”
Acta Mater.
,
51
(
14
), pp.
4013
4024
.10.1016/S1359-6454(03)00222-2
15.
Kumar
,
V.
,
2011
, “
Simulations and Modeling of Unequal Sized Particles Sintering
,” Ph.D. thesis, University of Utah, Salt Lake City, UT.
16.
Martin
,
C. L.
,
Schneider
,
L. C. R.
,
Olmos
,
L.
, and
Bouvard
,
D.
,
2006
, “
Discrete Element Modeling of Metallic Powder Sintering
,”
Scr. Mater.
,
55
(
5
), pp.
425
428
.10.1016/j.scriptamat.2006.05.017
17.
Tikare
,
V.
,
Braginsky
,
M.
,
Bouvard
,
D.
, and
Vagnon
,
A.
,
2010
, “
Numerical Simulation of Microstructural Evolution During Sintering at the Mesoscale in a 3D Powder Compact
,”
Comput. Mater. Sci.
,
48
(
2
), pp.
317
325
.10.1016/j.commatsci.2010.01.013
18.
Braginsky
,
M.
,
Tikare
,
V.
, and
Olevsky
,
E.
,
2005
, “
Numerical Simulation of Solid State Sintering
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
621
636
.10.1016/j.ijsolstr.2004.06.022
19.
Tikare
,
V.
,
Braginsky
,
M.
, and
Olevsky
,
E. A.
,
2003
, “
Numerical Simulation of Solid-State Sintering: I, Sintering of Three Particles
,”
J. Am. Ceram. Soc.
,
86
(
1
), pp.
49
53
.10.1111/j.1151-2916.2003.tb03276.x
20.
Pimienta
,
P. J. P.
,
Garboczi
,
E. J.
, and
Carter
,
W. C.
,
1992
, “
Cellular Automaton Algorithm for Surface Mass Transport Due to Curvature Gradients. Simulations of Sintering
,”
Comput. Mater. Sci.
,
1
(
1
), pp.
63
77
.10.1016/0927-0256(92)90008-W
21.
Bentz
,
D. P.
,
Pimienta
,
P. J. P.
,
Garboczi
,
E. J.
, and
Carter
,
W. C.
,
1991
, “
Cellular Automaton Simulations of Surface Mass Transport Due to Curvature Gradients: Simulations of Sintering in 3-Dimensions
,”
Synth. Process. Ceram.: Sci. Issue
,
249
, pp.
413
418
.10.1557/PROC-249-413
22.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
(
7
), pp.
527
544
.10.1080/10407782.2010.511987
23.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
, pp.
141
165
.10.1080/10586458.1992.10504253
24.
Vicsek
,
T.
,
1984
, “
Pattern Formation in Diffusion-Limited Aggregation
,”
Phys. Rev. Lett.
,
53
(
24
), pp.
2281
2284
.10.1103/PhysRevLett.53.2281
25.
Bohn
,
R. B.
, and
Garboczi
,
E. J.
,
2003
, “
User Manual for Finite Element Difference Programs: A Parallel Version of NISTIR 6269
,” National Institute of Standards and Technology Internal Report No. 6997, Gaithersburg, MD.
26.
Alexander
,
B. H.
, and
Balluffi
,
R. W.
,
1957
, “
The Mechanism of Sintering of Copper
,”
Acta Metall.
,
5
(
11
), pp.
666
677
.10.1016/0001-6160(57)90113-X
27.
Bentz
,
D. P.
,
2000
, “
CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modelling Package. Version 2.0
,” National Institute of Standards and Technology Interagency Report No. 7232, Gaithersburg, MD.
28.
User's Guide for FLUENT 6.0, 2002, Fluent Inc., Lebanon, NH.
29.
Espinosa
,
F. A. D.
,
Peters
,
T. B.
, and
Brisson
,
J. G.
,
2012
, “
Effect of Fabrication Parameters on the Thermophysical Properties of Sintered Wicks for Heat Pipe Applications
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7471
7486
.10.1016/j.ijheatmasstransfer.2012.07.037
You do not currently have access to this content.