Abstract

Chaotic dynamical systems are essentially nonlinear and are highly sensitive to variations in initial conditions and process parameters. Chaos may appear both in natural (e.g., heartbeat rhythms and weather fluctuations) and human-engineered (e.g., thermo-fluid, urban traffic, and stock market) systems. For prediction and control of such systems, it is often necessary to be able to distinguish between non-chaotic and chaotic behavior; several methods exist to detect the presence (or absence) of chaos, specially in noisy signals. A dynamical system may exhibit multiple chaotic regimes, and apparently, there exist no methods, reported in open literature, to classify these regimes individually. This paper demonstrates an application of standard hidden Markov modeling (HMM), which is a commonly used supervised method, as a technique to classify multiple regimes from a time series of dynamical systems, where classified regimes could be chaotic or non-chaotic. The proposed HMM-based method of regime classification has been tested using numerical data obtained from several well-known chaotic dynamical systems (e.g., Hénon, forced Duffing, Rössler, and Lorenz attractor). It is apparently well-suited to serve as a bench mark for the development of alternative data-driven methods to enhance the performance (e.g., accuracy and computational speed) of regime classification in chaotic dynamical systems.

References

References
1.
Lorenz
,
E.
,
1972
, “
Predictability: Does the Flap of a Butterfly’s Wing in Brazil Set Off a Tornado in Texas?
,”
American Association for the Advancement of Sciences, 139th Meeting
,
Washington, DC
,
Dec. 28
.
2.
Lorenz
,
E.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
. 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
3.
Wu
,
G.-Q.
,
Arzeno
,
N.
,
Shen
,
L.-L.
,
Tang
,
D.-K.
,
Zheng
,
D.-A.
,
Zhao
,
N.-Q.
,
Eckberg
,
D.-L.
, and
Poon
,
C.-S.
,
2009
, “
Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure
,”
PLoS One
,
4
(
2
), pp.
1
9
. 10.1371/journal.pone.0005361
4.
Mosko
,
D.
,
2005
,
On the Order of Chaos: Social Anthropology and the Science of Chaos
,
Berghahn Books
,
Brooklyn, NY
.
5.
Dendrinos
,
D.
,
1994
, “
Traffic-Flow Dynamics: A Search for Chaos
,”
Chaos, Solitons Fractals
,
4
(
4
), pp.
605
617
. 10.1016/0960-0779(94)90069-8
6.
Hsieh
,
D.
,
1991
, “
Chaos and Nonlinear Dynamics: Application to Financial Markets
,”
J. Finance
,
46
(
5
), pp.
1839
1877
. 10.1111/j.1540-6261.1991.tb04646.x
7.
Chen
,
G.
,
1999
,
Controlling Chaos and Bifurcations in Engineering Systems
,
CRC Press
,
Boca Raton, FL
.
8.
Gottwald
,
G.
, and
Melbourne
,
I.
,
2004
, “
A New Test for Chaos in Deterministic Systems
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
460
(
2042
), pp.
603
611
. 10.1098/rspa.2003.1183
9.
Gopal
,
R.
,
Venkatesan
,
A.
, and
Lakshmanan
,
M.
,
2013
, “
Applicability of 0-1 Test for Strange Nonchaotic Attractors
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
23
(
2
), p.
023123
. 10.1063/1.4808254
10.
Djurovíc
,
I.
, and
Rubez̆ić
,
V.
,
2008
, “
Chaos Detection in Chaotic Systems With Large Number of Components in Spectral Domain
,”
Sig. Process.
,
88
(
9
), pp.
2357
2362
. 10.1016/j.sigpro.2008.03.003
11.
Toker
,
D.
,
Sommer
,
F.
, and
D’Esposito
,
M.
,
2020
, “
A Simple Method for Detecting Chaos in Nature
,”
Commun. Biol.
,
3
(
11
), pp.
1
13
. 10.1038/s42003-019-0715-9
12.
Rabiner
,
L.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
. 10.1109/5.18626
13.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Sig. Process.
,
84
(
7
), pp.
1115
1130
. 10.1016/j.sigpro.2004.03.011
14.
Karim
,
F.
,
Majumdar
,
S.
,
Darabi
,
H.
, and
Chen
,
S.
,
2017
, “
LSTM Fully Convolutional Networks for Time Series Classification
,”
IEEE Access
,
6
, pp.
1662
1669
. 10.1109/ACCESS.2017.2779939
15.
Hénon
,
M.
,
1976
, “A Two-Dimensional Mapping With a Strange Attractor,”
The Theory of Chaotic Attractors
,
Springer
,
New York, NY
, pp.
94
102
.
16.
Thompson
,
J.
, and
Stewart
,
H.
,
1986
,
Nonlinear Dynamics and Chaos
, 2nd ed.,
John Wiley and Sons
,
Somerset, NJ, USA
.
17.
Rössler
,
O.
,
1976
, “
An Equation for Continuous Chaos
,”
Phys. Lett. A
,
57
(
5
), pp.
397
398
. 10.1016/0375-9601(76)90101-8
18.
Alvarez
,
G.
, and
Li
,
S.
,
2006
, “
Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems
,”
Int. J. Bifurcation Chaos
,
16
(
08
), pp.
2129
2151
. 10.1142/S0218127406015970
19.
Hajek
,
B.
,
2015
,
Random Processes for Engineers
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
20.
Najkar
,
N.
,
Razzazi
,
F.
, and
Sameti
,
H.
,
2010
, “
A Novel Approach to HMM-Based Speech Recognition Systems Using Particle Swarm Optimization
,”
Math. Comput. Modell.
,
52
(
11
), pp.
1910
1920
.
The BIC-TA 2009 Special Issue
. 10.1016/j.mcm.2010.03.041
21.
Oates
,
T.
,
Firoiu
,
L.
, and
Cohen
,
P.
,
2000
, “Using Dynamic Time Warping to Bootstrap HMM-based Clustering of Time Series,”
Sequence Learning
,
R.
Sun
, and
C. L.
Giles
, eds.,
Springer
,
New York, NY
, pp.
35
52
.
22.
Ali
,
S. S.
, and
Ghani
,
M. U.
,
2014
, “
Handwritten Digit Recognition Using DCT and HMMs
,”
2014 12th International Conference on Frontiers of Information Technology
,
Islamabad, Pakistan
,
Dec. 17–19
, pp.
303
306
.
23.
Ghalyan
,
N.
, and
Ray
,
A.
,
2020
, “
Symbolic Time Series Analysis for Anomaly Detection in Measure-Invariant Ergodic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
6
), p.
061003
. 10.1115/1.4046156
24.
Jordan
,
D.
, and
Smith
,
P.
,
2007
,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
, Vol.
10
,
Oxford University Press on Demand
,
Oxford, UK
.
25.
Asghari
,
H.
, and
Dardel
,
M.
,
2020
, “
Parameter Converting Method for Bifurcation Analysis of Nonlinear Dynamical Systems
,”
Sci. Iranica
,
27
(
1
), pp.
310
329
. 10.24200/sci.2018.50714.1832
26.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Sig. Process.
,
104
, pp.
105
119
. 10.1016/j.sigpro.2014.03.045
You do not currently have access to this content.