Abstract

In this paper, we first presented a four-bar linkage mechanism for actuating the wings in a flapping wing flying robot. After that, given the additional constraints imposed by the four-bar linkage, we parameterized the wing kinematics to provide sufficient control authority for stabilizing the system during 3D hovering. The four-bar linkage allows the motors to spin continuously in one direction while generating flapping motion on the wings. However, this mechanism constrains the flapping angle range which is a common control parameter in controlling such systems. To address this problem, we divided each wingbeat cycle into four variable-time segments which is an extension to previous work on split-cycle modulation using wing bias but allows the use of a constant flapping amplitude constraint for the wing kinematic. Finally, we developed an optimization framework to control the system for fast recovery while guaranteeing the stability. The results showed that the proposed control parameters are capable of creating symmetric and asymmetric motions between the two wings and, therefore can stabilize the hovering system with minimal actuation and flapping angle amplitude constraint.

References

1.
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “
A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,”
Sci. Rob.
,
2
(
3
), p.
eaal2505
.
2.
Tu
,
Z.
,
Fei
,
F.
,
Zhang
,
J.
, and
Deng
,
X.
,
2020
, “
An At-Scale Tailless Flapping-Wing Hummingbird and Experimental Validation
,”
IEEE Trans. Rob.
,
36
(
5
), pp.
1511
1525
.
3.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
341
347
.
4.
He
,
G.
,
Su
,
T.
,
Jia
,
T.
,
Zhao
,
L.
, and
Zhao
,
Q.
,
2020
, “
Dynamics Analysis and Control of a Bird Scale Underactuated Flapping-Wing Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
28
(
4
), pp.
1233
1242
.
5.
Doman
,
D. B.
,
Oppenheimer
,
M. W.
, and
Sigthorsson
,
D. O.
,
2010
, “
Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover
,”
J. Guid. Contr, and Dyn.
,
33
(
3
), pp.
724
739
.
6.
Oppenheimer
,
M. W.
,
Doman
,
D. B.
, and
Sigthorsson
,
D. O.
,
2011
, “
Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions
,”
J. Guid. Contr. Dyn.
,
34
(
1
), pp.
204
217
.
7.
Tijmons
,
S.
,
Karásek
,
M.
, and
De Croon
,
G.
,
2018
, “
Attitude Control System for a Lightweight Flapping Wing MAV
,”
Bioinspiration and Biomimetics
,
13
(
5
), p.
056004
.
8.
Vejdani
,
H.
,
Boerma
,
D.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2017
, “
Guidelines for the Design and Control of Bio-Inspired Hovering Robots
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
4160
4166
.
9.
Vejdani
,
H. R.
,
Boerma
,
D. B.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2019
, “
The Dynamics of Hovering Flight in Hummingbirds, Insects and Bats With Implications for Aerial Robotics
,”
Bioinspir. Biomim.
,
14
(
1
), p.
016003
.
10.
Zhang
,
J.
,
Fei
,
F.
,
Tu
,
Z.
, and
Deng
,
X.
,
2017
, “
Design Optimization and System Integration of Robotic Hummingbird
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
5422
5428
.
11.
Zhang
,
J.
,
Tu
,
Z.
,
Fei
,
F.
, and
Deng
,
X.
,
2017
, “
Geometric Flight Control of a Hovering Robotic Hummingbird
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
5415
5421
.
12.
Parslew
,
B.
,
2015
, “
Predicting Power-Optimal Kinematics of Avian Wings
,”
J. R. Soc. Interface
,
12
(
102
), p.
20140953
.
13.
Nabawy
,
M. R. A.
, and
Crowther
,
W. J.
,
2014
, “
On the Quasi-Steady Aerodynamics of Normal Hovering Flight Part I: The Induced Power Factor
,”
J. R. Soc. Interface
,
11
(
93
), p.
20131196
.
14.
Betts
,
J.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, 2nd ed.,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
, pp.
vii
427
.
15.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, Germany
16.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
,
Prentice Hall
,
NJ
, pp.
1
745
.
17.
Chang
,
S.
, and
Wang
,
Z. J.
,
2014
, “
Predicting Fruit Fly’s Sensing Rate With Insect Flight Simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
31
), pp.
11246
11251
.
18.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S. J.
, and
Hutchinson
,
S.
,
2015
, “
Lagrangian Modeling and Flight Control of Articulated-Winged Bat Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2867
2874
.
19.
Vejdani
,
H. R.
,
2019
, “
Dynamics and Stability of Bat-Scale Flapping Wing Hovering Robot
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
1106
1111
.
20.
Karasek
,
M.
,
Hua
,
A.
,
Nan
,
Y.
,
Lalami
,
M.
, and
Preumont
,
A.
,
2014
, “
Pitch and Roll Control Mechanism for a Hovering Flapping Wing Mav
,”
Int. J. Micro Air Vehicles
,
6
(
4
), pp.
253
264
.
You do not currently have access to this content.