Abstract

Biological flying, gliding, and falling creatures are capable of extraordinary forms of inertial maneuvering: free-space maneuvering based on fine control of their multibody dynamics, as typified by the self-righting reflexes of cats. However, designing inertial maneuvering capability into biomimetic robots, such as biomimetic unmanned aerial vehicles (UAVs), is challenging. Accurately simulating this maneuvering requires numerical integrators that can ensure both singularity-free integration, and momentum and energy conservation, in a strongly coupled system—properties unavailable in existing conventional integrators. In this work, we develop a pair of novel quaternion variational integrators (QVIs) showing these properties, and demonstrate their capability for simulating inertial maneuvering in a biomimetic UAV showing complex multibody dynamics coupling. Being quaternion-valued, these QVIs are innately singularity-free; and being variational, they can show excellent energy and momentum conservation properties. We explore the effect of variational integration order (left-rectangle versus midpoint) on the conservation properties of integrator, and conclude that in complex coupled systems in which canonical momenta may be time-varying, the midpoint integrator is required. The resulting midpoint QVI is well suited to the analysis of inertial maneuvering in a biomimetic UAV—a feature that we demonstrate in simulation—and of other complex dynamical systems.

References

1.
Kane
,
T. R.
, and
Scher
,
M. P.
,
1969
, “
A Dynamical Explanation of the Falling Cat Phenomenon
,”
Int. J. Solids Struct.
,
5
(
7
), pp.
663
670
.
2.
Siddall
,
R.
,
Ibanez
,
V.
,
Byrnes
,
G.
,
Full
,
R. J.
, and
Jusufi
,
A.
,
2021
, “
Mechanisms for Mid-Air Reorientation Using Tail Rotation in Gliding Geckos
,”
Integr. Comp. Biol.
,
61
(
2
), pp.
478
490
.
3.
Jusufi
,
A.
,
Zeng
,
Y.
,
Full
,
R. J.
, and
Dudley
,
R.
,
2011
, “
Aerial Righting Reflexes in Flightless Animals
,”
Integr. Comp. Biol.
,
51
(
6
), pp.
937
943
.
4.
Bergou
,
A. J.
,
Swartz
,
S. M.
,
Vejdani
,
H.
,
Riskin
,
D. K.
,
Reimnitz
,
L.
,
Taubin
,
G.
, and
Breuer
,
K. S.
,
2015
, “
Falling With Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia
,”
PLoS Biol.
,
13
(
11
), p.
e1002297
.
5.
Hedrick
,
T. L.
,
Usherwood
,
J. R.
, and
Biewener
,
A. A.
,
2007
, “
Low Speed Maneuvering Flight of the Rose-Breasted Cockatoo (Eolophus roseicapillus). II. Inertial and Aerodynamic Reorientation
,”
J. Exp. Biol.
,
210
(
11
), pp.
1912
1924
.
6.
Yeaton
,
I. J.
,
Ross
,
S. D.
,
Baumgardner
,
G. A.
, and
Socha
,
J. J.
,
2020
, “
Undulation Enables Gliding in Flying Snakes
,”
Nat. Phys.
,
16
(
9
), pp.
974
982
.
7.
Charlet
,
M.
, and
Gosselin
,
C.
,
2022
, “
Reorientation of Free-Falling Legged Robots
,”
ASME Open J. Eng.
,
1
, p.
011009
.
8.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2020
, “
Design, Analysis, and Integration of a New Two-Degree-of-Freedom Articulated Multi-Link Robotic Tail Mechanism
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021101
.
9.
Rone
,
W. S.
,
Saab
,
W.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Controller Design, Analysis, and Experimental Validation of a Robotic Serpentine Tail to Maneuver and Stabilize a Quadrupedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
8
), p.
081002
.
10.
Pons
,
A.
,
2019
, “
Supermanoeuvrability in a Biomimetic Morphing-Wing Aircraft
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge
.
11.
Pons
,
A.
, and
Cirak
,
F.
,
2023
, “
Multi-axis Nose-Pointing-and-Shooting in a Biomimetic Morphing-Wing Aircraft
,”
J. Guid. Control Dyn.
,
46
(
3
), pp.
499
517
.
12.
Drury
,
R. G.
, and
Whidborne
,
J. F.
,
2009
, “
Quaternion-Based Inverse Dynamics Model for Expressing Aerobatic Aircraft Trajectories
,”
J. Guid. Control Dyn.
,
32
(
4
), pp.
1388
1391
.
13.
Terze
,
Z.
,
Zlatar
,
D.
,
Vrdoljak
,
M.
, and
Pandža
,
V.
,
2017
, “
Lie Group Forward Dynamics of Fixed-Wing Aircraft With Singularity-Free Attitude Reconstruction on SO(3)
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021009
.
14.
Kuipers
,
J. B.
,
1999
,
Quaternions and Rotation Sequences
,
Princeton University Press
,
Princeton, NJ
.
15.
Leitz
,
T.
, and
Leyendecker
,
S.
,
2018
, “
Galerkin Lie-Group Variational Integrators Based on Unit Quaternion Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
338
, pp.
333
361
.
16.
Andrle
,
M. S.
, and
Crassidis
,
J. L.
,
2013
, “
Geometric Integration of Quaternions
,”
J. Guid. Control Dyn.
,
36
(
6
), pp.
1762
1767
.
17.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on SE(3) for Agile Maneuvers
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
091007
.
18.
Terze
,
Z.
,
Zlatar
,
D.
, and
Pandža
,
V.
,
2020
, “
Aircraft Attitude Reconstruction Via Novel Quaternion-Integration Procedure
,”
Aerosp. Sci. Technol.
,
97
, p.
105617
.
19.
Manchester
,
Z. R.
, and
Peck
,
M. A.
,
2016
, “
Quaternion Variational Integrators for Spacecraft Dynamics
,”
J. Guid. Control Dyn.
,
39
(
1
), pp.
69
76
.
20.
Afonso Silva
,
F. F.
,
José Quiroz-Omaña
,
J.
, and
Vilhena Adorno
,
B.
,
2022
, “
Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061005
.
21.
Ruggiero
,
A.
, and
Sicilia
,
A.
,
2022
, “
A Musculoskeletal Multibody Algorithm Based on a Novel Rheonomic Constraints Definition Applied to the Lower Limb
,”
ASME J. Biomech. Eng.
,
144
(
8
), p.
081010
.
22.
Xu
,
D.
,
Jahanchahi
,
C.
,
Took
,
C. C.
, and
Mandic
,
D. P.
,
2015
, “
Enabling Quaternion Derivatives: The Generalized HR Calculus
,”
R. Soc. Open Sci.
,
2
(
8
), p.
150255
.
23.
Müller
,
A.
,
Terze
,
Z.
, and
Pandza
,
V.
,
2016
, “
A Non-redundant Formulation for the Dynamics Simulation of Multibody Systems in Terms of Unit Dual Quaternions
,”
Proceedings of the IDETC/CIE
,
Charlotte, NC
,
ASME
, Paper No. V006T09A011.
24.
Müller
,
A.
, and
Terze
,
Z.
,
2016
, “
Geometric Methods and Formulations in Computational Multibody System Dynamics
,”
Acta Mech.
,
227
(
12
), pp.
3327
3350
.
25.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2016
, “
Singularity-Free Time Integration of Rotational Quaternions Using Non-redundant Ordinary Differential Equations
,”
Multibody Syst. Dyn.
,
38
(
3
), pp.
201
225
.
26.
Crouch
,
P. E.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
1
33
.
27.
Munthe-Kaas
,
H.
,
1998
, “
Runge–Kutta Methods on Lie Groups
,”
BIT Numer. Math.
,
38
(
1
), pp.
92
111
.
28.
Sveier
,
A.
,
Sjøberg
,
A. M.
, and
Egeland
,
O.
,
2019
, “
Applied Runge–Kutta–Munthe–Kaas Integration for the Quaternion Kinematics
,”
J. Guid. Control Dyn.
,
42
(
12
), pp.
2747
2754
.
29.
Leitz
,
T.
,
Sato Martín de Almagro
,
R. T.
, and
Leyendecker
,
S.
,
2021
, “
Multisymplectic Galerkin Lie Group Variational Integrators for Geometrically Exact Beam Dynamics Based on Unit Dual Quaternion Interpolation—No Shear Locking
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113475
.
30.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2007
, “
Lie Group Variational Integrators for the Full Body Problem
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
29–30
), pp.
2907
2924
.
31.
Saccon
,
A.
,
2009
, “
Midpoint Rule for Variational Integrators on Lie Groups
,”
Int. J. Numer. Methods Eng.
,
78
(
11
), pp.
1345
1364
.
32.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Störmer–Verlet Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051005
.
33.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
2001
(
10
), pp.
357
514
.
34.
Sola
,
J.
,
2016
, “
Quaternion Kinematics for the Error-State KF
,” Technical Report IRI-TR-16-02, Universitat Politecnica de Catalunya, Barcelona, Spain.
35.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2018
,
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds
,
Springer
,
Cham
.
36.
Terze
,
Z.
,
Pandža
,
V.
,
Kasalo
,
M.
, and
Zlatar
,
D.
,
2021
, “
Optimized Flapping Wing Dynamics Via DMOC Approach
,”
Nonlinear Dyn.
,
103
(
1
), pp.
399
417
.
37.
Kibble
,
T. W. B.
, and
Berkshire
,
F. H.
,
2004
,
Classical Mechanics
,
Imperial College Press
,
London, UK
.
38.
Dam
,
E. B.
,
Koch
,
M.
, and
Lillholm
,
M.
,
1998
, “
Quaternions, Interpolation and Animation
,” Technical Report DIKU-TR-98/5, University of Copenhagen, Copenhagen.
39.
Markley
,
F. L.
,
Cheng
,
Y.
,
Crassidis
,
J. L.
, and
Oshman
,
Y.
,
2007
, “
Averaging Quaternions
,”
J. Guid. Control Dyn.
,
30
(
4
), pp.
1193
1197
.
40.
Boyle
,
M.
,
2017
, “
The Integration of Angular Velocity
,”
Adv. Appl. Clifford Algebras
,
27
(
3
), pp.
2345
2374
.
You do not currently have access to this content.