Flank cutting can be effectively employed to machine ruled surfaces instead of traditional point cutting. In consideration of reducing discrepancies between designed and machined twisted ruled surfaces, an analytical model is established to account for undercutting incurred in flank milling by the use of cylindrical cutters. Based on the model, the twist angle, the ruling length, and the size of the used cutter relating to the magnitude of undercutting are observed. By flank milling twisted ruled blade surfaces of an impeller, an application example is given to show the developed 5-axis flank milling technique based on a type of a 5-axis machine tool.

1.
do Carmo, M. P., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey.
2.
Tsay
,
D. M.
, and
Wei
,
H. M.
,
1993
, “
Design and Machining of Cylindrical Cams with Translating Conical Followers
,”
Comput.-Aided Des.
,
25
, No.
10
, pp.
655
661
.
3.
Lee
,
Y. S.
, and
Koc
,
B.
,
1998
, “
Ellipse-Offset Approach and Inclined Zig-zag Method for Multi-Axis Roughing of Ruled Surface Pockets
,”
Comput.-Aided Des.
,
30
, No.
12
, pp.
957
971
.
4.
Northern Research and Engineering Corporation, 1990, Max-5 User’s Guide, Woburn, Massachusetts.
5.
Wu
,
C. Y.
,
1995
, “
Arbitrary Surface Flank Milling of Fan, Compressor, and Impeller Blades
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
534
539
.
6.
Kalpakjian, S., 1997, Manufacturing Processes for Engineering Materials, 3rd ed., Addison Wesley Longman, Inc.
7.
Marciniak
,
K.
,
1987
, “
Influence of Surface Shape on Admissible Tool Positions in 5-axis Face Milling
,”
Comput.-Aided Des.
,
19
, No.
5
, pp.
233
236
.
8.
Vickers
,
G. W.
, and
Quan
,
K. W.
,
1989
, “
Ball-Mills versus End-mills for Curved Surface Machining
,”
ASME J. Eng. Ind.
,
111
, No.
1
, pp.
22
26
.
9.
Takeuchi
,
Y.
, and
Idemura
,
T.
,
1991
, “
5-Axis Control Machining and Grinding Based on Solid Model
,”
CIRP Ann.
,
40
, No.
1
, pp.
55
458
.
10.
Takeuchi
,
Y.
, and
Watanabe
,
T.
,
1992
, “
Generation of 5-Axis Control Collision-Free Tool Path and Post-Processing for NC Data
,”
CIRP Ann.
,
41
, No.
1
, pp.
539
542
.
11.
Hwang
,
J. S.
,
1992
, “
Interference-Free Tool-Path Generation in the NC Machining of Parametric Compound Surfaces
,”
Comput.-Aided Des.
,
24
, No.
12
, pp.
667
676
.
12.
Choi
,
B. K.
,
Park
,
J. W.
, and
Jun
,
C. S.
,
1993
, “
Cutter-Location Data Optimization in 5-Axis Surface Machining
,”
Comput.-Aided Des.
,
25
, No.
6
, pp.
377
386
.
13.
Li
,
S.
, and
Jerard
,
R.
,
1994
, “
5-Axis Machining of Sculptured Surface With a Flat-End Cutter
,”
Comput.-Aided Des.
,
25
, No.
3
, pp.
165
178
.
14.
Suresh
,
K.
, and
Yang
,
D. C. H.
,
1994
, “
Constant Scallop-Height Machining of Free-Form Surfaces
,”
ASME J. Eng. Ind.
,
116
, No.
2
, pp.
253
259
.
15.
Tsay
,
D. M.
,
Yan
,
W. F.
, and
Ho
,
H. C.
,
2001
, “
Generation of Five-Axis Cutter Paths for a Ball-End Cutter with Global Interference Checking
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
50
56
.
16.
Stute
,
G.
,
Storr
,
A.
, and
Sielaff
,
W.
,
1979
, “
NC Programming of Ruled Surfaces for Five-Axis Machining
,”
CIRP Ann.
,
28
, No.
1
, pp.
267
271
.
17.
Ravani
,
B.
, and
Chen
,
Y. J.
,
1986
, “
Computer-Aided Design and Machining of Composite Ruled Surfaces
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, No.
2
, pp.
217
223
.
18.
Ravani
,
B.
, and
Chen
,
Y. J.
,
1991
, “
Bertrand Offsets of Ruled and Developable Surfaces
,”
Comput.-Aided Des.
,
23
, No.
2
, pp.
145
152
.
19.
Rehesteiner
,
F.
,
1993
, “
Collision-Free Five-Axis Milling of Twisted Ruled Surfaces
,”
CIRP Ann.
,
42
, No.
1
, pp.
457
461
.
20.
Elber
,
G.
, and
Fish
,
R.
,
1997
, “
5-Axis Free Form Surface Milling Using Piecewise Ruled Surface Approximation
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
383
387
.
21.
Smith
,
D. J. L.
, and
Merryweather
,
H.
,
1973
, “
The Use of Analytical Surfaces for the Design of Centrifugal Impellers by Computer Graphics
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
137
154
.
You do not currently have access to this content.