Abstract

Gas metal arc welding (GMAW) is the most widely used process for metal joining because of its high productivity and good quality, but analysis shows that the fundamental characteristic restricts conventional GMAW from further increasing the welding productivity. A novel GMAW process, refereed to as double-electrode GMAW or DE-GMAW, thus has been developed to make it possible to increase the melting current while the base metal current can still be controlled at a desired level. This fundamental change provides an effective method to allow manufacturers to use high melting currents to achieve high melting speed and low base metal heat input. A series of experiments have been conducted to uncover the basic characteristics of this novel process. Results obtained from analyses of high-speed image sequences and recorded current signals suggest that DE-GMAW can lower the critical current for achieving the desired spray transfer, shift the droplet trajectory, reduce the diameter of the droplet, and increase the speed and (generation) rate of the droplets.

1.
Thomsen
,
J. S.
, 2006, “
Control of Pulsed Gas Metal Arc Welding
,”
Int. J. Model. Identif. Control
,
1
(
2
), pp.
115
125
.
2.
Lancaster
,
J. F.
, 1986,
The Physics of Welding
, 2nd ed., International Institute of Welding,
Pergamon Press
, Oxford, UK.
3.
Lin
,
M. L.
, and
Eagar
,
T. W.
, 1986, “
Pressures Produced by Gas Tungsten Arcs
,”
Metall. Trans. B
0360-2141,
17B
, pp.
601
607
.
4.
Tsai
,
N. S.
, 1985, “
Distribution of the Heat and Current Fluxes in Gas Tungsten Arcs
,”
Metall. Trans. B
0360-2141,
16B
, pp.
841
846
.
5.
Zhang
,
Y. M.
,
Jiang
,
M.
, and
Lu
,
W.
, 2004, “
Double Electrodes Improve GMAW Heat Input Control
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
83
(
11
), pp.
39
41
.
6.
Li
,
K. H.
,
Chen
,
J. S.
, and
Zhang
,
Y. M.
, 2007, “
Double-Electrode GMAW Process and Control
,”
Weld. J.
,
86
(
8
), pp.
231
237
.
7.
O’Brien
,
R. L.
, 1991,
Welding Handbook
, 8th ed.,
American Welding Society
, Vol.
2
: Welding Processes.
8.
Wang
,
G.
,
Huang
,
P. G.
, and
Zhang
,
Y. M.
, 2004, “
Numerical Analysis of Metal Transfer in Gas Metal Arc Welding Under Modified Pulsed Current Conditions
,”
Metall. Mater. Trans. B
1073-5615,
35
(
5
), pp.
857
866
.
9.
Essers
,
W. G.
, and
Walter
,
R.
, 1981, “
Heat Transfer and Penetration Mechanisms With GMA and Plasma-GMA Welding
.”
Weld. J. (Miami, FL, U.S.)
0043-2296,
60
(
2
), pp.
37
-s–42-
s
.
10.
Jones
,
L. A.
,
Eagar
,
T. W.
, and
Lang
,
J. H.
, 1992, “
Investigation of Drop Detachment Control in Gas Metal Arc Welding
,”
Proc. 3rd International Conference on Trends in Welding Research
, Gatlinburg, TN,
ASM International
,
Materials Park, OH
, pp.
1009
1013
.
11.
Ueguri
,
S.
,
Hara
,
K.
, and
Komura
,
H.
, 1985, “
Study of Metal Transfer in Pulsed GMA Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
64
(
8
), pp.
242
-s–250-
s
.
12.
Ueyama
,
T.
, et al.
, 2005, “
Effects of Torch Configuration and Welding Current on Weld Bead Formation in High Speed Tandem Pulsed Gas Metal Arc Welding of Steel Sheets
,”
Sci. Technol. Weld. Joining
1362-1718,
10
(
6
), pp.
750
759
.
13.
Tsushima
,
S.
, and
Kitamura
,
M.
, 1996, “
Tandem Electrode AC-MIG Welding—Development of AC-MIG Welding Process (Report 4)
,”
Weld. Res. Abroad
0043-2318,
42
(
2
), pp.
26
32
.
14.
Waszink
,
J. H.
, and
Heuvel
,
G. P. M. V. d.
, 1982, “
Heat Generation and Heat Flow in the Filler Metal in GMAW Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
61
, pp.
269s
282s
.
15.
Wu
,
C. S.
,
Chen
,
M. A.
, and
Lu
,
Y. F.
, 2005, “
Effect of Current Waveforms on Metal Transfer in Pulsed Gas Metal Arc Welding
,”
Meas. Sci. Technol.
0957-0233,
16
(
12
), pp.
2459
2465
.
16.
Chakraborty
,
S.
, 2005, “
Analytical Investigations on Breakup of Viscous Liquid Droplets on Surface Tension Modulation During Welding Metal Transfer
,”
Appl. Phys. Lett.
0003-6951,
86
(
17
),
174104
.
17.
Zhang
,
Y. M.
, and
Li
,
P. J.
, 2001, “
Modified Active Control of Metal Transfer and pulsed GMAW of Titanium
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
80
(
2
), pp.
54S
61S
.
18.
Jones
,
L. A.
,
Eagar
,
T. W.
, and
Lang
,
J. H.
, 1998, “
A Dynamic Model of Drops Detaching From a Gas Metal Arc Welding Electrode
,”
J. Phys. D
0022-3727,
31
(
1
), pp.
107
123
.
19.
Haidar
,
J.
, 1998, “
An Analysis of the Formation of Metal Droplets in Arc Welding
,”
J. Phys. D
0022-3727,
31
(
10
), pp.
1233
1244
.
20.
Kim
,
Y. S.
, and
Eagar
,
T. W.
, 1993, “
Analysis of Metal Transfer in Gas Metal Arc Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
72
(
6
), pp.
269
-s–278-
s
.
21.
Wang
,
F.
,
Hou
,
W. K.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
,
Schultz
,
W. W.
, and
Wang
,
P. C.
, 2003, “
Modeling and Analysis of Metal Transfer in Gas Metal Arc Welding
,”
J. Phys. D
0022-3727,
36
(
9
), pp.
1143
1152
.
22.
Amin
,
M.
, 1983, “
Pulse Current Parameters for Arc Stability and Controlled Metal Transfer in Arc Welding
,”
Met. Constr.
0307-7896,
15
, pp.
272
278
.
23.
Jackson
,
C. E.
, 1960, “
The Science of Arc Welding. Part II: Consumable-Electrode Welding Arc
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
39
(
5
), pp.
177s
190s
.
24.
Amson
,
J. C.
, 1965, “
Lorentz Force in Molten Tip of An Arc Electrode
,”
Br. J. Appl. Phys.
0508-3443,
16
(
8
), pp.
1169
1179
.
25.
Mendez
,
P. F.
, and
Eagar
,
T. W.
, 2003, “
Penetration and Defect Formation in High-Current Arc Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
82
(
10
), pp.
296S
306S
.
You do not currently have access to this content.