In droplet-based manufacturing processes, such as dropwise rapid prototyping, solder bumping, and spray forming, the quality of the deposit is adversely affected by bouncing of liquid droplets off the target surfaces. This study investigates the effects of wetting and surface roughness on the bouncing phenomenon. An analytical model, based on the conservation of energy during deposition, was developed to correlate wetting and surface roughness to a dimensionless droplet bouncing potential. In addition, experiments were conducted to image the deposition behavior of Sn-37wt% Pb solder droplets, averaging 280μm in diameter, on prepared substrates with a wide range of wetting properties and roughness levels. The high-speed image data correlate well with the model prediction that droplets are likely to bounce as a target surface becomes less wetting or is roughened.

1.
Chen
,
C. -A.
, and
Chun
,
J. -H.
, 1997, “
Development of a Droplet-Based Manufacturing Process for Free-Form Fabrication
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
131
134
.
2.
Orme
,
M.
, and
Bright
,
A.
, 2000, “
Recent Advances in Highly Controlled Molten Metal Droplet Formation From Capillary Stream Break-Up With Applications to Advanced Manufacturing
,”
Liquid Metal Atomization: Fundamentals and Practice
,
K. P.
Cooper
,
I. E.
Anderson
,
S. D.
Ridder
, and
F. S.
Biancaniello
, eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
157
168
.
3.
Passow
,
C. H.
, 1992, “
A Study of Spray Forming Using Uniform Droplet Sprays
, S.M thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
4.
Schiaffino
,
S.
, and
Sonin
,
A. A.
, 1997, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
1070-6631,
9
(
11
), pp.
3172
3187
.
5.
Aziz
,
S. D.
, and
Chandra
,
S.
, 2000, “
Impact, Recoil and Splashing of Molten Metal Droplets
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2841
2857
.
6.
Kim
,
H. -Y.
,
Feng
,
Z. C.
, and
Chun
,
J. -H.
, 2000, “
Instability of a Liquid Jet Emerging From a Droplet Upon Collision With a Solid Surface
,”
Phys. Fluids
1070-6631,
12
(
3
), pp.
531
541
.
7.
Mundo
,
C. H. R.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1995, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
0301-9322,
21
(
2
), pp.
151
173
.
8.
Kim
,
H. -Y.
, 1999, “
Spreading Behavior of Molten Metal Microdroplets
,” Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
9.
Hsiao
,
W.
, and
Chun
,
J. -H.
, 2002, “
Bouncing of Molten Solder Droplets During Solder Bump Formation
,”
2002 ICEP Proceedings
, Tokyo, Japan, pp.
398
403
.
10.
Nakae
,
H.
,
Inui
,
R.
,
Hirata
,
Y.
, and
Saito
,
H.
, 1998, “
Effects of Surface Roughness on Wettability
,”
Acta Mater.
1359-6454,
46
(
7
), pp.
2313
2318
.
11.
Wang
,
G. -X.
, and
Matthys
,
E. F.
, 1996,
Melt Spinning, Strip Casting and Slab Casting
,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
205
236
.
12.
Chun
,
J. -H.
, and
Hsiao
,
W. -K.
, 2003, “
Effects of Surface Roughness on Solder Bump Formation by Direct Droplet Deposition
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
161
164
.
13.
Collings
,
E. W.
,
Markworth
,
A. J.
,
McCoy
,
J. K.
, and
Saunders
,
J. H.
, 1990, “
Splat-Quench Solidification of Freely Falling Liquid-Metal Drops by Impact on a Planar Substrate
,”
J. Mater. Sci.
0022-2461,
25
, pp.
3677
.
14.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 1996, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
1070-6631,
8
(
3
), pp.
650
659
.
15.
Madejski
,
J.
, 1976, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1009
1013
.
16.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
, 1997, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
0001-1541,
43
(
9
), pp.
2169
2179
.
17.
Harlow
,
F. H.
, and
Shannon
,
J. P.
, 1967, “
The Splash of a Liquid Drop
,”
J. Appl. Phys.
0021-8979,
38
, pp.
3855
3866
.
18.
Tsurutani
,
K.
,
Yao
,
M.
,
Senda
,
J.
, and
Fujimoto
,
H.
, 1990, “
Numerical Analysis of the Deformation Process of a Droplet Impinging Upon a Wall
,”
JSME Int. J., Ser. II
0914-8817,
33
(
3
), pp.
555
561
.
19.
Trapaga
,
G.
, and
Szekely
,
J.
, 1991, “
Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes
,”
Metall. Trans. B
0360-2141,
22
(
6
), pp.
901
914
.
20.
Fukai
,
J.
,
Zhao
,
Z.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Miyatake
,
O.
, 1993, “
Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface
,”
Phys. Fluids A
0899-8213,
5
(
11
), pp.
2588
2599
.
21.
Dussan V
,
E. B.
, 1979, “
On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
371
400
.
22.
Ablett
,
R.
, 1923, “
An Investigation of the Angle of Contact Between Paraffin Wax and Water
,”
Philos. Mag.
,
46
, pp.
244
256
. 1478-6435
23.
Elliott
,
G. E. P.
, and
Riddiford
,
A. C.
, 1967, “
Dynamic Contact Angles. I. The Effect of Impressed Motion
,”
J. Colloid Interface Sci.
0021-9797,
23
, pp.
389
398
.
24.
Prasher
,
R. S.
, 2001, “
Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
969
975
.
You do not currently have access to this content.