Developed in this paper is a hybrid method for calibration of modular reconfigurable robots (MRRs). The underlying problem under study is unique to MRRs, that is, how to calibrate a set of MRR’s geometric parameters that are applicable to all feasible configurations. For this reason, a hybrid search method is developed to ensure a global search over the MRRs’ workspace for each feasible configuration. By combining a genetic algorithm method with a Monte Carlo method, this method includes three levels of search, namely, pose, workspace, and configuration-space. The final set of global solutions is generated progressively from the results of these three levels of search. The effectiveness of this method is demonstrated through a case study.
1.
Chhabra
, R.
, 2008, “Concurrent Design of Reconfigurable Robots Using a Robotic Hardware-in-the-Loop Simulation
,” MS thesis, University of Toronto, Toronto, ON.2.
Hollerbach
, J. M.
, 1989, A Survey of Kinematic Calibration: The Robotics Review
, MIT
, Cambridge, MA
, pp. 206
–242
.3.
Kang
, S. -H.
, Pryor
, M. W.
, and Tesar
, D.
, 2004, “Kinematic Model and Metrology System for Modular Robot Calibration
,” Proceedings of the IEEE International Conference on Robotics and Automation
, pp. 2894
–2899
.4.
Roth
, Z. S.
, Mooring
, B. W.
, and Ravani
, B.
, 1987, “An Overview of Robot Calibration
,” IEEE J. Rob. Autom.
0882-4967, 3
(5
), pp. 377
–385
.5.
Hollerbach
, J. M.
, and Wampler
, C. W.
, 1996, “The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods
,” Int. J. Robot. Res.
0278-3649, 15
(6
), pp. 573
–591
.6.
Mooring
, B. W.
, Roth
, Z. S.
, and Driels
, R. D.
, 1991, Fundamentals of Manipulator Calibration
, Wiley
, New York
.7.
Everett
, L. J.
, Driels
, M.
, and Mooring
, B. W.
, 1987, “Kinematic Modeling for Robot Calibration
,” Proceedings of the IEEE International Conference on Robotics and Automation
, pp. 183
–189
.8.
Hayati
, S. A.
, 1983, “Robot Arm Geometric Link Parameters Estimation
,” Proceedings of the 22nd IEEE Conference on Decision and Control
, San Antonio, TX, pp. 1477
–1483
.9.
Mooring
, B. W.
, 1983, “The Effect of Joint Axis Misalignment on Robot Positioning Accuracy
,” Proceedings of the ASME International Computers in Engineering Conference and Exhibition
, pp. 151
–155
.10.
Gong
, C.
, Yuan
, J.
, and Ni
, J.
, 2000, “A Self-Calibration Method for Robotic Measurement System
,” ASME J. Manuf. Sci. Eng.
1087-1357, 122
, pp. 174
–181
.11.
Yao
, Y. L.
, and Wu
, S. M.
, 1995, “Recursive Calibration of Industrial Manipulators by Adaptive Filtering
,” ASME J. Manuf. Sci. Eng.
1087-1357, 117
, pp. 406
–411
.12.
Chen
, I. -M.
, and Yang
, G.
, 1997, “Kinematic Calibration of Modular Reconfigurable Robots Using Product-of-Exponentials Formulation
,” J. Rob. Syst.
0741-2223, 14
(11
), pp. 807
–821
.13.
Lin
, Y.
, Tu
, X.
, Perron
, C.
, and Xi
, F.
, 2010, “A Data Decorrelation Method for 3D Position Measurements
,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
.14.
Lin
, Y.
, 2008, “Robot Calibration Based on Nonlinear Formulation for Modular Reconfigurable Robots (MRRs)
,” MS thesis, Ryerson University, Toronto, ON.15.
Xi
, F.
, Nancoo
, D.
, and Knopf
, G.
, 2005, “Total Least-Squares Methods for Active View Registration of Three-Dimensional Line Laser Scanning Data
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 127
(1
), pp. 50
–56
.16.
Goldberg
, D. E.
, 1989, Genetic Algorithms in Search, Optimization and Learning
, Addison-Wesley
, Reading, MA
.17.
Samak
, S.
, 1999, “Robot Kinematic Calibration Accuracy Using Genetic Algorithm
,” Proceedings of the IMAC-XIX Conference on Structural Dynamics
, 4359
, pp. 1506
–1510
.18.
Wang
, K.
, 2009, “Application of Genetic Algorithms to Robot Kinematics Calibration
,” Int. J. Syst. Sci.
0020-7721, 40
(2
), pp. 147
–153
.19.
Liu
, Y.
, Jiang
, Y. S.
, Liang
, B.
, and Xu
, W. F.
, 2008, “Calibration of a 6-DOF Space Robot Using Genetic Algorithm
,” Chin. J. Mech. Eng.
0577-6686, 21
(06
), pp. 6
–13
.20.
Dolinsky
, J. U.
, Jenkinson
, I. D.
, and Colquhoun
, G. J.
, 2007, “Application of Genetic Programming to the Calibration of Industrial Robots
,” Comput. Ind. Eng.
0360-8352, 58
, pp. 255
–264
.21.
Xi
, F.
, and Sun
, Q.
, 2008, “A Motion Simulation Method for Reconfigurable Machines
,” Int. J. Manuf. Res.
, 3
(2
), pp. 216
–235
.22.
Mavroidis
, C.
, Dubowsky
, S.
, Drouet
, P.
, Hinterstreiner
, J.
, and Flanz
, J.
, 1997, “A Systematic Error Analysis of Robotic Manipulators: Application to a High Performance Medical Robot
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Albuquerque, NM, pp. 980
–985
.23.
Mohamed
, R. P.
, Xi
, F.
, and Finistauri
, A. D.
, 2010, “Module-Based Static Structural Design of a Modular Reconfigurable Robot
,” ASME J. Mech. Des.
0161-8458, 132
(1
), p. 014501
.24.
Stewart
, C. V.
, 1999, “Robust Parameters Estimation in Computer Vision
,” SIAM Rev.
0036-1445, 41
(3
), pp. 513
–537
.25.
Coope
, I. D.
, Lintott
, A. B.
, Dunlop
, G. R.
, and Vuskovic
, M. I.
, 2000, “Numerically Stable Methods for Converting Rotation Matrices to Euler Parameters
,” Advances in Robot Kinematics
, J.
Lenarcic
and M. M.
Stanisic
, eds., Kluwer Academic Publishers
, Dordrecht, The Netherlands
, pp. 35
–42
.26.
Paul
, R. P.
, 1981, Robot Manipulators: Mathematics, Programming, and Control
, MIT
, Cambridge, MA
, pp. 86
–95
.27.
Sobol
, I. M.
, 1973, Monte Carlo Numerical Methods
, Nauka
, Moscow
.28.
Salomon
, R.
, 1996, “The Influence of Different Coding Schemes on the Computational Complexity of Genetic Algorithms in Function Optimization
,” Proceedings of the Fourth International Conference on Parallel Problem Solving from Nature
, pp. 227
–235
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.