Developed in this paper is a hybrid method for calibration of modular reconfigurable robots (MRRs). The underlying problem under study is unique to MRRs, that is, how to calibrate a set of MRR’s geometric parameters that are applicable to all feasible configurations. For this reason, a hybrid search method is developed to ensure a global search over the MRRs’ workspace for each feasible configuration. By combining a genetic algorithm method with a Monte Carlo method, this method includes three levels of search, namely, pose, workspace, and configuration-space. The final set of global solutions is generated progressively from the results of these three levels of search. The effectiveness of this method is demonstrated through a case study.

1.
Chhabra
,
R.
, 2008, “
Concurrent Design of Reconfigurable Robots Using a Robotic Hardware-in-the-Loop Simulation
,” MS thesis, University of Toronto, Toronto, ON.
2.
Hollerbach
,
J. M.
, 1989,
A Survey of Kinematic Calibration: The Robotics Review
,
MIT
,
Cambridge, MA
, pp.
206
242
.
3.
Kang
,
S. -H.
,
Pryor
,
M. W.
, and
Tesar
,
D.
, 2004, “
Kinematic Model and Metrology System for Modular Robot Calibration
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2894
2899
.
4.
Roth
,
Z. S.
,
Mooring
,
B. W.
, and
Ravani
,
B.
, 1987, “
An Overview of Robot Calibration
,”
IEEE J. Rob. Autom.
0882-4967,
3
(
5
), pp.
377
385
.
5.
Hollerbach
,
J. M.
, and
Wampler
,
C. W.
, 1996, “
The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods
,”
Int. J. Robot. Res.
0278-3649,
15
(
6
), pp.
573
591
.
6.
Mooring
,
B. W.
,
Roth
,
Z. S.
, and
Driels
,
R. D.
, 1991,
Fundamentals of Manipulator Calibration
,
Wiley
,
New York
.
7.
Everett
,
L. J.
,
Driels
,
M.
, and
Mooring
,
B. W.
, 1987, “
Kinematic Modeling for Robot Calibration
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
183
189
.
8.
Hayati
,
S. A.
, 1983, “
Robot Arm Geometric Link Parameters Estimation
,”
Proceedings of the 22nd IEEE Conference on Decision and Control
, San Antonio, TX, pp.
1477
1483
.
9.
Mooring
,
B. W.
, 1983, “
The Effect of Joint Axis Misalignment on Robot Positioning Accuracy
,”
Proceedings of the ASME International Computers in Engineering Conference and Exhibition
, pp.
151
155
.
10.
Gong
,
C.
,
Yuan
,
J.
, and
Ni
,
J.
, 2000, “
A Self-Calibration Method for Robotic Measurement System
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
174
181
.
11.
Yao
,
Y. L.
, and
Wu
,
S. M.
, 1995, “
Recursive Calibration of Industrial Manipulators by Adaptive Filtering
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
117
, pp.
406
411
.
12.
Chen
,
I. -M.
, and
Yang
,
G.
, 1997, “
Kinematic Calibration of Modular Reconfigurable Robots Using Product-of-Exponentials Formulation
,”
J. Rob. Syst.
0741-2223,
14
(
11
), pp.
807
821
.
13.
Lin
,
Y.
,
Tu
,
X.
,
Perron
,
C.
, and
Xi
,
F.
, 2010, “
A Data Decorrelation Method for 3D Position Measurements
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
.
14.
Lin
,
Y.
, 2008, “
Robot Calibration Based on Nonlinear Formulation for Modular Reconfigurable Robots (MRRs)
,” MS thesis, Ryerson University, Toronto, ON.
15.
Xi
,
F.
,
Nancoo
,
D.
, and
Knopf
,
G.
, 2005, “
Total Least-Squares Methods for Active View Registration of Three-Dimensional Line Laser Scanning Data
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
1
), pp.
50
56
.
16.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Learning
,
Addison-Wesley
,
Reading, MA
.
17.
Samak
,
S.
, 1999, “
Robot Kinematic Calibration Accuracy Using Genetic Algorithm
,”
Proceedings of the IMAC-XIX Conference on Structural Dynamics
,
4359
, pp.
1506
1510
.
18.
Wang
,
K.
, 2009, “
Application of Genetic Algorithms to Robot Kinematics Calibration
,”
Int. J. Syst. Sci.
0020-7721,
40
(
2
), pp.
147
153
.
19.
Liu
,
Y.
,
Jiang
,
Y. S.
,
Liang
,
B.
, and
Xu
,
W. F.
, 2008, “
Calibration of a 6-DOF Space Robot Using Genetic Algorithm
,”
Chin. J. Mech. Eng.
0577-6686,
21
(
06
), pp.
6
13
.
20.
Dolinsky
,
J. U.
,
Jenkinson
,
I. D.
, and
Colquhoun
,
G. J.
, 2007, “
Application of Genetic Programming to the Calibration of Industrial Robots
,”
Comput. Ind. Eng.
0360-8352,
58
, pp.
255
264
.
21.
Xi
,
F.
, and
Sun
,
Q.
, 2008, “
A Motion Simulation Method for Reconfigurable Machines
,”
Int. J. Manuf. Res.
,
3
(
2
), pp.
216
235
.
22.
Mavroidis
,
C.
,
Dubowsky
,
S.
,
Drouet
,
P.
,
Hinterstreiner
,
J.
, and
Flanz
,
J.
, 1997, “
A Systematic Error Analysis of Robotic Manipulators: Application to a High Performance Medical Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Albuquerque, NM, pp.
980
985
.
23.
Mohamed
,
R. P.
,
Xi
,
F.
, and
Finistauri
,
A. D.
, 2010, “
Module-Based Static Structural Design of a Modular Reconfigurable Robot
,”
ASME J. Mech. Des.
0161-8458,
132
(
1
), p.
014501
.
24.
Stewart
,
C. V.
, 1999, “
Robust Parameters Estimation in Computer Vision
,”
SIAM Rev.
0036-1445,
41
(
3
), pp.
513
537
.
25.
Coope
,
I. D.
,
Lintott
,
A. B.
,
Dunlop
,
G. R.
, and
Vuskovic
,
M. I.
, 2000, “
Numerically Stable Methods for Converting Rotation Matrices to Euler Parameters
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
35
42
.
26.
Paul
,
R. P.
, 1981,
Robot Manipulators: Mathematics, Programming, and Control
,
MIT
,
Cambridge, MA
, pp.
86
95
.
27.
Sobol
,
I. M.
, 1973,
Monte Carlo Numerical Methods
,
Nauka
,
Moscow
.
28.
Salomon
,
R.
, 1996, “
The Influence of Different Coding Schemes on the Computational Complexity of Genetic Algorithms in Function Optimization
,”
Proceedings of the Fourth International Conference on Parallel Problem Solving from Nature
, pp.
227
235
.
You do not currently have access to this content.