Freeform fabrication and additive fabrication technologies have been combined with subtractive processes to achieve a variety of fully integrated rapid manufacturing systems. The combination of separate fabrication techniques into one rapid manufacturing system results in unit manufacturing process integration, sometimes known as a hybrid system. However, the design methods or approaches required to construct these integrated systems are vaguely described or not mentioned at all. The final product from any integrated system is affected not only by the unit manufacturing processes themselves, but also by the extent the individual units are assimilated into an integrated process. A wide variety of integrated and hybrid manufacturing systems and current manufacturing design methodologies are described in this paper, along with their similarities and differences. Through our extensive review, it was discovered that there are five key elements to a reliable integrated rapid manufacturing system: process planning software, motion system, control system, unit manufacturing process, and a finishing process. By studying the manner in which all other systems have been integrated, a table of successful integrated manufacturing system element combinations has been complied, documenting each of the key element choices, resulting in a variety of modular designs. This paper further discusses the importance of the five elements in manufacturing system integration, and how an integrated system is the way to move forward in the manufacturing domain. To that end, a rapid manufacturing system design methodology was developed that explores designs via process analysis to discover integration potential. Cost-benefit analysis is then used to assess the performance of the new system. This analysis determines if all needs have been met, while staying within the constraints of time and resources. Additionally, a table of common issues and obstacles encountered during manufacturing system development has been compiled to assist in the design and development of future rapid manufacturing systems. To illustrate the design methodology, our modular design experience with a laser aided manufacturing process is presented. Unit manufacturing process integration has increased the productivity and capabilities of our system, which reduced resource volume and increased productivity.

1.
Gebhardt
,
A.
, 2003,
Rapid Prototyping
,
Hanser
,
Munich
.
2.
Venuvinod
,
P. K.
, and
Ma
,
W.
, 2004,
Rapid Prototyping Laser-Based and Other Technologies
,
Kluwer Academic
,
Boston
.
3.
Hopkinson
,
N.
,
Hague
,
R. J. M.
, and
Dickens
,
P. M.
, 2006,
Rapid Manufacturing: An Industrial Revolution for the Digital Age
,
Wiley
,
Chichester, England
.
4.
Gerelle
,
E. G. R.
, and
Stark
,
J.
, 1988,
Integrated Manufacturing: Strategy, Planning, and Implementation
,
McGraw-Hill
,
New York
.
5.
Dorf
,
R. C.
, and
Kusiak
,
A.
, 1994,
Handbook of Design, Manufacturing and Automation
,
Wiley
,
New York
.
6.
Shiou
,
F. -J.
, and
Chen
,
M. -J.
, 2003, “
Intermittent Process Hybrid Measurement System on the Machining Center
,”
Int. J. Prod. Res.
0020-7543,
41
(
18
), pp.
4403
4427
.
7.
Mediliyegedara
,
T. K. K. R.
,
De Silva
,
A. K. M.
,
Harrison
,
D. K.
, and
Mcgeough
,
J. A.
, 2005, “
New Developments in the Process Control of the Hybrid Electro Chemical Discharge Machining (ECDM) Process
,”
J. Mater. Process. Technol.
0924-0136,
167
(
2–3
), pp.
338
343
.
8.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
, 2003,
Manufacturing Processes for Engineering Materials
,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
9.
Grenda
,
E. P.
, 2007, Worldwide Guide to Rapid Prototyping, Jan. 2, http://home.att.net/~castleisland/home.htmhttp://home.att.net/~castleisland/home.htm
10.
Kerschbaumer
,
M.
, and
Ernst
,
G.
, 2004, “
Hybrid Manufacturing Process for Rapid High Performance Tooling Combining High Speed Milling and Laser Claddin
,”
Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics (ICALEO)
, San Francisco, CA, Vol.
97
, pp.
1710
1720
.
11.
Nowotny
,
S.
,
Scharek
,
S.
, and
Naumann
,
T.
, 2003, “
Integrated Machine Tool for Laser Beam Cladding and Freeforming
,”
2003 Proceedings of the Thermal Spray: Advancing the Science and Applying the Technology
,
B. R.
Marple
, and
C.
Moreau
, eds., Orlando, FL, pp.
629
631
.
12.
Boddu
,
M. R.
,
Landers
,
R. G.
,
Musti
,
S.
,
Agarwal
,
S.
,
Ruan
,
J.
, and
Liou
,
F. W.
, 2003, “
System Integration and Real-Time Control Architecture of a Laser Aided Manufacturing Process
,” Austin, TX.
13.
Liou
,
F. W.
, and
Kinsella
,
M.
, 2009, “
A Rapid Manufacturing Process for High Performance Precision Metal Parts
,”
SME Rapid 2009 Conference and Exhibition
, Paper No. TP09PUB18.
14.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
, 2002, “
Improving Solid Freeform Fabrication by Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
216
(
9
), pp.
1253
1264
.
15.
16.
Xue
,
L.
, 2006, “
Laser Consolidation: A One-Step Manufacturing Process for Making Net-Shaped Functional Aerospace Components
,”
Proceedings of the SAE International Aerospace Manufacturing and Automated Fastening Conference and Exhibition
, Toulouse, France, Paper No. 2006-01-3163.
17.
Xue
,
L.
, and
Industrial Materials Institute
, 2008, “
Laser Consolidation: A Rapid Manufacturing Process for Making Net-Shape Functional Components
,”
Industrial Materials Institute, National Research Council of Canada
,
London, ON
, Chap. 16.
18.
Hur
,
J.
,
Lee
,
K.
,
Zhu-hu
, and
Kim
,
J.
, 2002, “
Hybrid Rapid Prototyping System Using Machining and Deposition
,”
Comput.-Aided Des.
0010-4485,
34
(
10
), pp.
741
754
.
19.
Choi
,
D. -S.
,
Lee
,
S. H.
,
Shin
,
B. S.
,
Whang
,
K. H.
,
Song
,
Y. A.
,
Park
,
S. H.
, and
Lee
,
H. S.
, 2001, “
Development of a Direct Metal Freeform Fabrication Technique Using Co2 Laser Welding and Milling Technology
,”
J. Mater. Process. Technol.
0924-0136,
113
(
1–3
), pp.
273
279
.
20.
Akula
,
S.
, and
Karunakaran
,
K. P.
, 2006, “
Hybrid Adaptive Layer Manufacturing: An Intelligent Art of Direct Metal Rapid Tooling Process
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
22
(
2
), pp.
113
123
.
21.
Klocke
,
F.
, 2002,
Rapid Manufacture of Metal Components
,
Fraunhofer Institute for Production Technology, IPT
,
Aachen, Germany
.
22.
Song
,
Y. -A.
, and
Park
,
S.
, 2006, “
Experimental Investigations Into Rapid Prototyping of Composites by Novel Hybrid Deposition Process
,”
J. Mater. Process. Technol.
0924-0136,
171
(
1
), pp.
35
40
.
23.
Cooper
,
A. G.
, 1999, “
Fabrication of Ceramic Components Using Mold Shape Deposition Manufacturing
,” Ph.D. thesis, Stanford University, Palo, Alto, CA.
24.
Jeong
,
K. -H.
,
Kim
,
J.
, and
Lee
,
L. P.
, 2005, Polymeric Synthesis of Biomimetic Artificial Compound Eyes, Seoul, Korea.
25.
Fessler
,
J. R.
,
Merz
,
R.
,
Nickel
,
A. H.
, and
Prinz
,
F. B.
, 1999, Laser Deposition of Metals for Shape Deposition Manufacturing, Austin, TX.
26.
Kreis
,
O.
,
Celeghini
,
M.
, and
Merklein
,
M.
, 2005, “
Integrated Manufacturing by Hydroforming, Laser Welding and Cutting
,”
Adv. Mater. Res.
1022-6680,
6–8
pp.
393
400
.
27.
Himmer
,
T.
,
Stiles
,
E.
,
Techel
,
A.
, and
Beyer
,
E.
, 2005, PCPro a Novel Technology for Rapid Prototyping and Rapid Manufacturing, Austin, TX.
28.
Yang
,
D. Y.
,
Kim
,
H. C.
,
Lee
,
S. H.
,
Ahn
,
D. G.
, and
Park
,
S. K.
, 2005, “
Rapid Fabrication of Large-Sized Solid Shape Using Variable Lamination Manufacturing and Multi-Functional Hotwire Cutting System
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, pp.
60
71
.
29.
Isermann
,
R.
, 1996, “
Modeling and Design Methodology From Mechatronic Systems
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
1
(
1
), pp.
16
28
.
30.
Nagel
,
R.
,
Hutcheson
,
R.
,
Stone
,
R.
, and
Mcadams
,
D.
, 2006, A Process Modeling Methodology for Automation of Manual and Time Dependent Processes, Philadelphia, PA.
31.
Nagel
,
R.
,
Hutcheson
,
R.
,
Stone
,
R.
, and
Mcadams
,
D.
, 2009, “
Process and Event Modeling for Conceptual Design
,”
J. Eng. Design
0954-4828, in press.
32.
Gausemeier
,
J.
,
Flath
,
M.
, and
Ohringer
,
S. M.
, 2001, “
Conceptual Design of Mechatronic Systems Supported by Semi-Formal Specification
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Como, Italy, pp.
888
892
.
33.
Judd
,
R. P.
,
Vanderbok
,
R. S.
,
Brown
,
M. E.
, and
Sauter
,
J. A.
, 1991, “
Manufacturing System Design Methodology: Execute the Specification
,”
Proceedings of the First International Workshop on Rapid System Prototyping: Shortening the Path From Specification to Prototype
, Research Triangle Park, NC, Vol.
1
, pp.
97
115
.
34.
Martin
,
J. N.
, 1997,
Systems Engineering Guidebook: A Process for Development Systems and Products
,
CRC
,
Boca Raton, FL
.
35.
Grady
,
J. O.
, 1994,
System Integration
,
CRC
,
Boca Raton, FL
.
36.
Ahoy
,
C.
, 1999, What Is “Process Mapping”?.
37.
Proth
,
J. -M.
,
Wang
,
L.
, and
Xie
,
X.
, 1997, “
A Class of Petri Nets for Manufacturing System Integration
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
3
), pp.
317
326
.
38.
Mehrabi
,
M. G.
,
Ulsoy
,
A. G.
, and
Koren
,
Y.
, 2000, “
Reconfigurable Manufacturing Systems: Key to Future Manufacturing
,”
J. Intell. Manuf.
0956-5515,
11
, pp.
403
419
.
39.
Macedo
,
J.
, 2004, “
Unified Structural-Procedural Approach for Designing Integrated Manufacturing Systems
,”
Int. J. Prod. Res.
0020-7543,
42
(
17
), pp.
3565
3588
.
40.
Kusiak
,
A.
, 1993,
Concurrent Engineering: Automation, Tools, and Techniques
,
Wiley
,
New York
.
41.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
New York
.
42.
Nevins
,
J. L.
,
Whitney
,
D. E.
, and
Defazio
,
T. L.
, 1989,
Concurrent Design of Products and Processes: A Strategy for the Next Generation in Manufacturing
,
McGraw-Hill
,
New York
.
43.
Gotthard
,
V.
, and
Bercsey
,
T.
, 2006, “
Development of Modular Production Lines
,”
Period. Polytech., Mech. Eng.-Masinostr.
0324-6051,
50
(
2
), pp.
125
145
.
44.
Hopkinson
,
N. E.
, and
Dickens
,
P.
, 2001, “
Rapid Prototyping for Direct Manufacture
,”
Rapid Prototyping J.
1355-2546,
7
(
4
), pp.
197
202
.
45.
Wohlers
,
T.
, 2006, Obstacles to Rapid Manufacturing.
46.
Talwar
,
R.
, 2000, “
Selective Metal Matrix Composite Reinforcement by Laser Deposition
,” U.S. Patent No. 6,122,884.
47.
Doumanidis
,
C.
, and
Kwak
,
Y. -M.
, 2001, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
1
), pp.
45
52
.
48.
Jandric
,
Z.
, and
Kovacevic
,
R.
, 2004, “
Heat Management in Solid Freeform Fabrication Based on Deposition by Welding
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
, pp.
1525
1540
.
49.
Bhimanapati
,
M.
, 2004, “
Influence of Process Parameters on Laser Aided Manufacturing Process (LAMP)
,” MS thesis, Univeristy of Missouri-Rolla, Rolla, MO.
50.
Peng
,
X.
,
Xia
,
C.
,
Liu
,
Y.
, and
Zhang
,
Z.
, 2009, “
Comparison of Molybdenizing and NiCrAlY Coating on Ti and Ti-6Al-4V
,”
Rare Met.
,
28
(
1
), pp.
49
56
.
51.
Pan
,
H.
,
Sparks
,
T.
,
Thakar
,
Y.
, and
Liou
,
F.
, 2006, “
The Investigation of Gravity-Driven Metal Powder Flow in Coaxial Nozzle for Laser Aided Direct Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
541
553
.
52.
Ruan
,
J.
,
Sparks
,
T.
,
Panackal
,
A.
,
Eiamsa-Ard
,
K.
,
Liou
,
F.
,
Slattery
,
K.
,
Chou
,
H.
, and
Kinsella
,
M.
, 2007, “
Automated Slicing for a Multi-Axis Metal Deposition System
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
303
310
.
53.
Ren
,
L.
,
Sparks
,
T.
,
Ruan
,
J.
, and
Liou
,
F.
, 2008, “
Process Planning Strategies for Solid Freeform Fabrication of Metal Parts
,”
J. Manuf. Process.
1526-6125,
27
(
4
), pp.
158
165
.
54.
Kasa
,
S.
, 2002, “
Utilizing Stereolithography in Mass Customization
,”
Proceedings of the Stereolithography User Group Meeting
, Costa Mesa, CA.
55.
Boddu
,
M. R.
,
Landers
,
R. G.
, and
Liou
,
F. W.
, 2002, Control of Laser Cladding for Rapid Prototyping: A Review, Austin, TX.
56.
Hu
,
D.
, and
Kovacevic
,
R.
, 2003, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
51
60
.
57.
Starr
,
M. K.
, 2004,
Production and Operations Management
,
Atomic Dog
,
Cincinnati, OH
.
58.
Jeng
,
J. -Y.
, and
Lin
,
M. -C.
, 2001, “
Mold Fabrication and Modification Using Hybrid Processes of Selective Laser Cladding and Milling
,”
J. Mater. Process. Technol.
0924-0136,
110
(
1
), pp.
98
103
.
59.
Yang
,
D. Y.
,
Ahn
,
D. G.
,
Lee
,
C. H.
,
Park
,
C. H.
, and
Kim
,
T. J.
, 2002, “
Integration of CAD/CAM/CAE/RP for the Development of Metal Forming Process
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
26
34
.
61.
Pham
,
D. T.
, and
Dimov
,
S. S.
, 2001,
Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling
,
Springer
,
New York
.
62.
Kai
,
C. C.
, and
Fai
,
L. K.
, 1997,
Rapid Prototyping: Principles & Applications in Manufacturing
,
Wiley
,
New York
.
63.
Wang
,
B.
, 1997,
Integrated Product, Process and Enterprise Design
,
Chapman and Hall
,
London
.
64.
Shunk
,
D. L.
, 1992,
Integrated Process Design and Development
,
Business One Irwin
,
Homewood, IL
.
65.
NIST
, 1993, Integration Definition for Function Modeling (IDEF0), Information Processing Standards Publications (FIPS PUBS).
66.
Chapin
,
N.
, 1970, “
Flowcharting With the ANSI Standard: A Tutorial
,”
ACM Comput. Surv.
0360-0300,
2
(
2
), pp.
119
146
.
67.
Darnton
,
G.
, and
Darnton
,
M.
, 1997,
Business Process Analysis
,
International Thomson Business
,
London
.
68.
Hillier
,
F. S.
, and
Hillier
,
M. S.
, 2008,
Introduction to Management Science: A Modeling and Case Studies Approach With Spreadsheets
,
McGraw-Hill
,
New York
.
69.
Dewhurst
,
R. F. J.
, 1972,
Business Cost-Benefit Analysis
,
McGraw-Hill
,
London, UK
.
70.
Sassone
,
P. G.
, and
Schaffer
,
W. A.
, 1978,
Cost-Benefit Analysis a Handbook
,
Academic Press
,
New York
.
71.
Liou
,
F. W.
, 1999, “
A Multi-Axis Rapid Prototyping System
,”
Proceedings of the SME Rapid Prototyping and Manufacturing Conference
, Vol.
3
, pp.
565
579
.
72.
Munjuluri
,
N.
,
Agarwal
,
S.
, and
Liou
,
F. W.
, 2000, Process Modeling, Monitoring and Control of Laser Metal Forming, Austin, TX.
73.
Liou
,
F. W.
, and
Ruan
,
J.
, 2002, A Hybrid Metal Deposition and Removal System for Rapid Manufacturing, San Antonio, TX.
74.
Liou
,
F. W.
,
Slattery
,
K.
,
Choi
,
J.
,
Chou
,
H.
,
Kinsella
,
M.
,
Newkirk
,
J.
, and
Young
,
K.
, 2005, Research on a Hybrid Manufacturing Process for Aerospace Structures, Orlando, FL.
75.
Phatak
,
K.
, 2005, “
Experimental Analysis and Modeling of Laser Aided Manufacturing Process (LAMP)
,” M.S. thesis, University of Missouri-Rolla, Rolla, MO.
76.
Thakar
,
Y.
, 2004, “
Effects of Nozzle Geometry Parameters on Powder Stream Structure in Laser Aided Deposition Process
, MS thesis, University of Missouri-Rolla, Rolla, MO.
77.
Eiamsa-Ard
,
K.
,
Liou
,
F. W.
,
Landers
,
R. G.
, and
Choset
,
H.
, 2003, “
Toward Automatic Process Planning of a Multi-Axis Hybrid Laser Aided Manufacturing System: Skeleton-Based Offset Edge Generation
,”
Proceedings of theASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Chicago, IL.
78.
Ruan
,
J.
,
Eismas-Ard
,
K.
, and
Liou
,
F. W.
, 2005, “
Automatic Process Planning and Toolpath Generation of a Multiaxis Hybrid Manufacturing System
,”
J. Manuf. Process.
1526-6125,
7
(
1
), pp.
57
68
.
79.
Stroble
,
J. K.
,
Landers
,
R. G.
, and
Liou
,
F. W.
, 2006, “
Automation of a Hybrid Manufacturing System Through Tight Integration of Software and Sensor Feedback
,”
Proceedings of the 17th Annual Solid Freeform Fabrication Symposium
, Austin, TX, pp.
586
597
.
80.
Ren
,
L.
,
Padathu
,
A. P.
,
Ruan
,
J.
,
Sparks
,
T.
, and
Liou
,
F. W.
, 2008, Three Dimensional Die Repair Using a Hybrid Manufacturing System, Austin, TX.
You do not currently have access to this content.