This paper addresses the challenging problem of determining feed direction and tool orientation at a given cutter contact (CC) point in five-axis free-form surface machining with flat-end mills. The objective is to efficiently determine a feed direction and tool orientation that will avoid both local and global tool gouging and yield a near maximum machining strip width at the CC point. Concurrent determination of the optimal feed direction and tool orientation is a very computationally intensive task and searching for the correct solution would involve exhaustive evaluations of the machining strip width at many feed directions and tool orientations. In this paper, the optimal feed directions and analytical solutions for the optimal tool orientations in five-axis flat-end milling of spherical, cylindrical, and toroidal surfaces are identified first. A toroidal surface inscription method is devised to approximate the local surface geometry at a CC point on a free-form surface by an inscribed toroidal surface. Analytical solutions for toroidal surface machining are then employed to position the flat-end mill at the CC point with the tool feeding in the best toroidal surface inscribing direction. Case studies have demonstrated that the proposed method can efficiently determine a feed direction and tool orientation, corresponding to a near maximum machining strip width.

1.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
2.
Vickers
,
G. W.
, and
Quan
,
K. W.
, 1989, “
Ball-Mills Versus End-Mills for Curved Surface Machining
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
22
26
.
3.
Mullins
,
S. H.
,
Jensen
,
C. G.
, and
Anderson
,
D. C.
, 1993, “
Scallop Elimination Based on Precise 5-Axis Tool Placement, Orientation, and Step-Over Calculations
,”
Proceedings of the 1993 ASME Design Technical Conference
, Albuquerque, NM, DE-Vol.
65
, pp.
535
544
.
4.
Bedi
,
S.
,
Gravelle
,
S.
, and
Chen
,
Y. H.
, 1997, “
Principle Curvature Alignment Techniques for Machining Complex Surfaces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
756
765
.
5.
Rao
,
N.
,
Bedi
,
S.
, and
Buchal
,
R.
, 1996, “
Implementation of the Principal-Axis Method for Machining of Complex Surfaces
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
11
, pp.
249
257
.
6.
Lee
,
Y. S.
, and
Ji
,
H.
, 1997, “
Surface Interrogation and Machining Strip Evaluation for 5-Axis CNC Die and Mould Machining
,”
Int. J. Prod. Res.
0020-7543,
35
, pp.
225
252
.
7.
Li
,
Z.
, and
Chen
,
W.
, 2005, “
The Analysis of Correlative Error in Principal Axis Method for Five-Axis Machining of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1031
1036
.
8.
Rao
,
A.
, and
Sarma
,
R.
, 2000, “
On Local Gouging in Five-Axis Sculptured Surface Machining Using Flat-End Tools
,”
Comput.-Aided Des.
0010-4485,
32
, pp.
409
420
.
9.
Zhong
,
Y.
,
Zhou
,
J.
, and
Chen
,
T.
, 2002, “
Determination of Cutter Orientation for Five-Axis Sculptured Surface Machining With a Filleted-End Cutter
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
, pp.
735
740
.
10.
Yoon
,
J. H.
,
Pottmann
,
H.
, and
Lee
,
Y. S.
, 2003, “
Locally Optimal Cutting Positions for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
69
81
.
11.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2005, “
Optimal Tool Orientation for Five-Axis Tool-End Machining by Swept Envelope Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
810
818
.
12.
Lee
,
Y. S.
, 1997, “
Admissible Tool Orientation Control of Gouging Avoidance for 5-Axis Complex Surface Machining
,”
Comput.-Aided Des.
0010-4485,
29
, pp.
507
521
.
13.
Lo
,
C. C.
, 1999, “
Efficient Cutter-Path Planning for Five-Axis Surface Machining With a Flat-End Cutter
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
557
566
.
14.
Kiswanto
,
G.
,
Lauwers
,
B.
, and
Kruth
,
J. P.
, 2007, “
Gouging Elimination Through Tool Lifting in Tool Path Generation in Five-Axis Milling Based on Faceted Models
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
32
, pp.
293
309
.
15.
Li
,
H.
, and
Feng
,
H. Y.
, 2004, “
Efficient Five-Axis Machining of Free-Form Surfaces With Constant Scallop Height Tool Paths
,”
Int. J. Prod. Res.
0020-7543,
42
, pp.
2403
2417
.
16.
Anotaipaiboon
,
W.
, and
Makhanov
,
S. S.
, 2005, “
Tool Path Generation for Five-Axis NC Machining Using Adaptive Space-Filling Curves
,”
Int. J. Prod. Res.
0020-7543,
43
, pp.
1643
1665
.
17.
Gray
,
P. J.
,
Bedi
,
S.
, and
Ismail
,
F.
, 2005, “
Arc-Intersect Method for 5-Axis Tool Positioning
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
663
674
.
18.
Hosseinkhani
,
Y.
,
Akbari
,
J.
, and
Vafaeesefat
,
A.
, 2007, “
Penetration-Elimination Method for Five-Axis CNC Machining of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1625
1635
.
19.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2000, “
Multi-Point Tool Positioning Strategy for 5-Axis Machining of Sculptured Surfaces
,”
Comput. Aided Geom. Des.
0167-8396,
17
, pp.
83
100
.
20.
Fan
,
J.
, and
Ball
,
A.
, 2008, “
Quadric Method for Cutter Orientation in Five-Axis Sculptured Surface Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
, pp.
788
801
.
21.
Barakchi Fard
,
M. J.
, and
Feng
,
H. Y.
, 2009, “
Effect of Tool Tilt Angle on Machining Strip Width in Five-Axis Flat-End Milling of Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
44
, pp.
211
222
.
22.
Yoon
,
J. H.
, 2003, “
Tool Tip Gouging Avoidance and Optimal Tool Positioning for 5-Axis Sculptured Surface Machining
,”
Int. J. Prod. Res.
0020-7543,
41
, pp.
2125
2142
.
23.
Gray
,
P. J.
,
Bedi
,
S.
, and
Ismail
,
F.
, 2003, “
Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
347
357
.
24.
Kruth
,
J. P.
, and
Klewais
,
P.
, 1994, “
Optimization and Dynamic Adaptation of the Cutter Inclination During Five-Axis Milling of Sculptured Surfaces
,”
CIRP Ann.
0007-8506,
43
, pp.
443
448
.
25.
Lauwers
,
B.
,
Kruth
,
J. P.
, and
Dejonghe
,
P.
, 2001, “
An Operation Planning System for Multi-Axis Milling of Sculptured Surfaces
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
17
, pp.
799
804
.
26.
Rao
,
N.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2000, “
Integrated Tool Positioning and Tool Path Planning for Five-Axis Machining of Sculptured Surfaces
,”
Int. J. Prod. Res.
0020-7543,
38
, pp.
2709
2724
.
27.
Jun
,
C. S.
,
Cha
,
K.
, and
Lee
,
Y. S.
, 2003, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
549
566
.
28.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
A Machining Potential Field Approach to Tool Path Generation for Multi-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
357
371
.
29.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1497
1507
.
30.
Barakchi Fard
,
M. J.
, 2009, “
Optimal Tool Orientation in Five-Axis Surface Machining Using Flat-End Mills
,” Ph.D. thesis, University of Western Ontario, London, ON, Canada.
31.
Tutunea-Fatan
,
O. R.
, and
Feng
,
H. Y.
, 2005, “
Determination of Geometry-Based Errors for Interpolated Tool Paths in Five-Axis Surface Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
60
67
.
You do not currently have access to this content.