Nanocomposite and multiphase structures have become more important nowadays to enhance the mechanical properties of materials. Laser shock peening (LSP) is one of the most efficient ways to increase component fatigue life. In this paper, numerical and experimental studies have been carried out to study the effects of nanoparticles integrated structures during the laser shock peening of aluminum alloys. The LSP experiment of aluminum samples with different particle densities was carried out. The effect of nanoparticle on shock wave propagation, plastic deformation, energy absorption, and residual stress magnitude was studied. A qualitative agreement is found between experiment and simulation. The existence of nanoparticles affects the stress wave propagation and increases the ratio of absorbed energy to total energy and thus the magnitude of residual stress of the material after LSP.

1.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y. -W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
(
10
), pp.
1021
1036
.
2.
Zhang
,
W.
, and
Yao
Y. L.
, 2002, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
369
378
.
3.
Peyre
,
P.
, 1996, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng., A
0921-5093,
210
(
1
), pp.
102
113
.
4.
Braisted
,
W.
, and
Brockman
,
R.
, 1999, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
0142-1123,
21
(
7
), pp.
719
724
.
5.
Peyre
,
P.
,
Chaieb
,
I.
, and
Braham
,
C.
, 2007, “
FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
(
3
), pp.
205
.
6.
Warren
,
A. W.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
, 2008, “
Massive Parallel Laser Shock Peening: Simulation, Analysis, and Validation
,”
Int. J. Fatigue
0142-1123,
30
(
1
), pp.
188
197
.
7.
Yang
,
C. H.
,
Hodgson
,
P. D.
,
Liu
,
Q. C.
, and
Ye
,
L.
, 2007, “
Three-Dimensional Finite Element Modelling of Laser Shock Peening Process
,”
Mater. Sci. Forum
0255-5476,
561–565
(
3
), pp.
2261
2264
.
8.
Ye
,
C.
,
Liao
,
Y.
, and
Cheng
,
G. J.
, 2010, “
Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6061
,”
Adv. Eng. Mater.
1438-1656,
12
(
4
), pp.
291
297
.
9.
Ye
,
C.
,
Suslov
,
S.
,
Kim
,
B. J.
,
Stach
,
E. A.
, and
Cheng
,
G. J.
, 2010, “
Fatigue Performance Improvement in AISI 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening
,”
Acta Mater.
1359-6454, in press.
10.
Liao
,
Y.
,
Ye
,
C.
,
Kim
,
B. -J.
,
Suslov
,
S.
,
Stach
,
E. A.
, and
Cheng
,
G. J.
, 2010, “
Nucleation of Highly Dense Nanoscale Precipitates Based on Warm Laser Shock Peening
,”
J. Appl. Phys.
0021-8979,
108
(
6
), p.
063518
.
11.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
, 2003, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
0020-7683,
40
(
13–14
), pp.
3647
3679
.
12.
Trias
,
D.
,
Costa
,
J.
,
Turon
,
A.
, and
Hurtado
,
J. E.
, 2006, “
Determination of the Critical Size of a Statistical Representative Volume Element (SRVE) for Carbon Reinforced Polymers
,”
Acta Mater.
1359-6454,
54
(
13
), pp.
3471
3484
.
13.
Ghosh
,
S.
, and
Mukhopadhyay
,
S. N.
, 1993, “
A Material Based Finite Element Analysis of Heterogeneous Media Involving Dirichlet Tessellations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
104
(
2
), pp.
211
247
.
14.
Ghosh
,
S.
, and
Moorthy
,
S.
, 1995, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Cell Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
373
409
.
15.
Zhang
,
J.
, and
Katsube
,
N.
, 1995, “
A Hybrid Finite Element Method for Heterogeneous Materials With Randomly Dispersed Elastic Inclusions
,”
Finite Elem. Anal. Design
0168-874X,
19
(
1–2
), pp.
45
55
.
16.
ABAQUS
, 2008, ABAQUS User’s Manual V 6.8.
17.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
(
2
), pp.
775
784
.
18.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, pp.
541
547
.
19.
Dabboussi
,
W.
, 2005, “
Modeling of Ductile Fracture Using the Dynamic Punch Test
,”
Int. J. Mech. Sci.
0020-7403,
47
(
8
), pp.
1282
1299
.
20.
Klug
,
H. P.
, and
Alexander
,
L. E.
, 1974,
X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials
,
Wiley
,
New York
.
21.
Li
,
J.
,
Malis
,
T.
, and
Dionne
,
S.
, 2006, “
Recent Advances in FIB-TEM Specimen Preparation Techniques
,”
Mater. Charact.
1044-5803,
57
(
1
), pp.
64
70
.
22.
Ding
,
K.
,
Ye
,
L.
, and
Institute of Materials Minerals and Mining
, 2006,
Laser Shock Peening: Performance and Process Simulation
,
CRC
,
North America
.
You do not currently have access to this content.