This letter investigates a unique process to generate enhanced laser shock by applying an active liquid confinement—hydrogen peroxide (H2O2). The mechanism of fast chemical etching-assisted laser ablation is proposed. As a result, comparing with utilizing water as confinement, the efficiency of laser shock peening (LSP) of aluminum alloy 6061 with an active liquid confinement is improved by 150%, and the ablation rate of pulse laser ablation (PLA) of zinc is enhanced by 300%. This method breaks the major limitation of underwater pulsed laser processing caused by the breakdown plasma, with additional mechanisms to generate higher ablation rate and shock pressure under the same laser intensities.

References

1.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Bartnicki
,
E.
, 1997, “
Laser Shock Processing of Materials: Experimental Study of Breakdown Plasma Effects at the Surface of Confining Water
,”
Proc. SPIE
,
3097
, pp.
570
575
.
2.
Kruusing
,
A.
, 2004, “
Underwater and Water-Assisted Laser Processing: Part 1—General Features, Steam Cleaning and Shock Processing
,”
Opt. Lasers Eng.
,
41
(
2
), pp.
307
327
.
3.
Liao
,
Y.
,
Ye
,
C.
,
Gao
,
H.
,
Kim
,
B.
,
Suslov
,
S.
,
Stach
,
E. A.
, and
Cheng
,
G. J.
, 2011, “
Dislocation Pinning Effects Induced by Nano-Precipitates During Warm Laser Shock Peening: Dislocation Dynamic Simulation and Experiments
,”
J. Appl. Phys.
,
110
(
2
), p.
023518
.
4.
Sollier
,
A.
,
Berthe
,
L.
,
Peyre
,
P.
,
Bartnicki
,
E.
, and
Fabbro
,
R.
, 2003, “
Laser-Matter Interaction in Laser Shock Processing
,”
First International Symposium on High-Power Laser Macroprocessing
, Vol.
4831
, pp.
463
467
.
5.
Wu
,
B.
, and
Shin
,
Y. C.
, 2005, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
,
97
(
11
), p.
113517
.
6.
Liao
,
Y. L.
,
Ye
,
C.
,
Kim
,
B. J.
,
Suslov
,
S.
,
Stach
,
E. A.
, and
Cheng
,
G. J.
, 2010, “
Nucleation of Highly Dense Nanoscale Precipitates Based on Warm Laser Shock Peening
,”
J. Appl. Phys.
,
108
(
6
), p.
063518
.
7.
Gao
,
H.
,
Ye
,
C.
, and
Cheng
,
G. J.
, 2009, “
Deformation Behaviors and Critical Parameters in Microscale Laser Dynamic Forming
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051011
.
8.
Yu
,
C. J.
,
Gao
,
H.
,
Yu
,
H. Y.
,
Jiang
,
H. Q.
, and
Cheng
,
G. J.
, 2009, “
Laser Dynamic Forming of Functional Materials Laminated Composites on Patterned Three-Dimensional Surfaces With Applications on Flexible Microelectromechanical Systems
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091108
.
9.
Kruusing
,
A.
, 2004, “
Underwater and Water-Assisted Laser Processing: Part 2—Etching, Cutting and Rarely Used Methods
,”
Opt. Lasers Eng.
,
41
(
2
), pp.
329
352
.
10.
Choo
,
K. L.
,
Ogawa
,
Y.
,
Kanbargi
,
G.
,
Otra
,
V.
,
Raff
,
L. M.
, and
Komanduri
,
R.
, 2004, “
Micromachining of Silicon by Short-Pulse Laser Ablation in Air and Under Water
,”
Mater. Sci. Eng., A
,
372
(
1–2
), pp.
145
162
.
11.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Bartnicki
,
E.
, 1999, “
Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime
,”
J. Appl. Phys.
,
85
(
11
), pp.
7552
7555
.
12.
Wu
,
B. X.
, and
Shin
,
Y. C.
, 2006, “
Laser Pulse Transmission Through the Water Breakdown Plasma in Laser Shock Peening
,”
Appl. Phys. Lett.
,
88
(
4
), p.
041116
.
13.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
14.
Yang
,
G. W.
, 2007, “
Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals
,”
Prog. Mater. Sci.
,
52
(
4
), pp.
648
698
.
15.
Ballard
,
P.
,
Fournier
,
J.
,
Fabbro
,
R.
, and
Frelat
,
J.
, 1991, “
Residual-Stresses Induced by Laser-Shocks
,”
J. Phys. III
,
1
(
C3
), pp.
487
494
.
16.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
, 1996, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng., A
,
210
(
1–2
), pp.
102
113
.
17.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Bartnicki
,
E.
, 1998, “
Experimental Study of the Transmission of Breakdown Plasma Generated During Laser Shock Processing
,”
Eur. Phys. J.: Appl. Phys.
,
3
(
2
), pp.
215
218
.
18.
Ye
,
C.
,
Liao
,
Y. L.
, and
Cheng
,
G. J.
, 2010, “
Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160
,”
Adv. Eng. Mater.
,
12
(
4
), pp.
291
297
.
19.
Berthe
,
L.
,
Sollier
,
A.
,
Peyre
,
P.
,
Fabbro
,
R.
, and
Bartnicki
,
E.
, 2000, “
The Generation of Laser Shock Waves in a Water-Confinement Regime With 50 ns and 150 ns XeCl Excimer Laser Pulses
,”
J. Phys. D.
,
33
(
17
), pp.
2142
2145
.
20.
Peyre
,
P.
,
Berthe
,
L.
,
Fabbro
,
R.
, and
Sollier
,
A.
, 2000, “
Experimental Determination by PVDF and EMV Techniques of Shock Amplitudes Induced by 0.6–3 ns Laser Pulses in a Confined Regime With Water
,”
J. Phys. D.
,
33
(
5
), pp.
498
503
.
21.
Hong
,
Z. K.
,
Farooq
,
A.
,
Barbour
,
E. A.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 2009, “
Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H2O Near 2.5 μm
,”
J. Phys. Chem. A
,
113
(
46
), pp.
12919
12925
.
22.
Mao
,
X. L.
, and
Russo
,
R. E.
, 1997, “
Observation of Plasma Shielding by Measuring Transmitted and Reflected Laser Pulse Temporal Profiles
,”
Appl. Phys. A
,
64
(
1
), pp.
1
6
.
You do not currently have access to this content.