This letter investigates a unique process to generate enhanced laser shock by applying an active liquid confinement—hydrogen peroxide (H2O2). The mechanism of fast chemical etching-assisted laser ablation is proposed. As a result, comparing with utilizing water as confinement, the efficiency of laser shock peening (LSP) of aluminum alloy 6061 with an active liquid confinement is improved by 150%, and the ablation rate of pulse laser ablation (PLA) of zinc is enhanced by 300%. This method breaks the major limitation of underwater pulsed laser processing caused by the breakdown plasma, with additional mechanisms to generate higher ablation rate and shock pressure under the same laser intensities.
Issue Section:
Technical Briefs
References
1.
Berthe
, L.
, Fabbro
, R.
, Peyre
, P.
, and Bartnicki
, E.
, 1997, “Laser Shock Processing of Materials: Experimental Study of Breakdown Plasma Effects at the Surface of Confining Water
,” Proc. SPIE
, 3097
, pp. 570
–575
.2.
Kruusing
, A.
, 2004, “Underwater and Water-Assisted Laser Processing: Part 1—General Features, Steam Cleaning and Shock Processing
,” Opt. Lasers Eng.
, 41
(2
), pp. 307
–327
.3.
Liao
, Y.
, Ye
, C.
, Gao
, H.
, Kim
, B.
, Suslov
, S.
, Stach
, E. A.
, and Cheng
, G. J.
, 2011, “Dislocation Pinning Effects Induced by Nano-Precipitates During Warm Laser Shock Peening: Dislocation Dynamic Simulation and Experiments
,” J. Appl. Phys.
, 110
(2
), p. 023518
.4.
Sollier
, A.
, Berthe
, L.
, Peyre
, P.
, Bartnicki
, E.
, and Fabbro
, R.
, 2003, “Laser-Matter Interaction in Laser Shock Processing
,” First International Symposium on High-Power Laser Macroprocessing
, Vol. 4831
, pp. 463
–467
.5.
Wu
, B.
, and Shin
, Y. C.
, 2005, “A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,” J. Appl. Phys.
, 97
(11
), p. 113517
.6.
Liao
, Y. L.
, Ye
, C.
, Kim
, B. J.
, Suslov
, S.
, Stach
, E. A.
, and Cheng
, G. J.
, 2010, “Nucleation of Highly Dense Nanoscale Precipitates Based on Warm Laser Shock Peening
,” J. Appl. Phys.
, 108
(6
), p. 063518
.7.
Gao
, H.
, Ye
, C.
, and Cheng
, G. J.
, 2009, “Deformation Behaviors and Critical Parameters in Microscale Laser Dynamic Forming
,” ASME J. Manuf. Sci. Eng.
, 131
(5
), p. 051011
.8.
Yu
, C. J.
, Gao
, H.
, Yu
, H. Y.
, Jiang
, H. Q.
, and Cheng
, G. J.
, 2009, “Laser Dynamic Forming of Functional Materials Laminated Composites on Patterned Three-Dimensional Surfaces With Applications on Flexible Microelectromechanical Systems
,” Appl. Phys. Lett.
, 95
(9
), p. 091108
.9.
Kruusing
, A.
, 2004, “Underwater and Water-Assisted Laser Processing: Part 2—Etching, Cutting and Rarely Used Methods
,” Opt. Lasers Eng.
, 41
(2
), pp. 329
–352
.10.
Choo
, K. L.
, Ogawa
, Y.
, Kanbargi
, G.
, Otra
, V.
, Raff
, L. M.
, and Komanduri
, R.
, 2004, “Micromachining of Silicon by Short-Pulse Laser Ablation in Air and Under Water
,” Mater. Sci. Eng., A
, 372
(1–2
), pp. 145
–162
.11.
Berthe
, L.
, Fabbro
, R.
, Peyre
, P.
, and Bartnicki
, E.
, 1999, “Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime
,” J. Appl. Phys.
, 85
(11
), pp. 7552
–7555
.12.
Wu
, B. X.
, and Shin
, Y. C.
, 2006, “Laser Pulse Transmission Through the Water Breakdown Plasma in Laser Shock Peening
,” Appl. Phys. Lett.
, 88
(4
), p. 041116
.13.
Fabbro
, R.
, Fournier
, J.
, Ballard
, P.
, Devaux
, D.
, and Virmont
, J.
, 1990, “Physical Study of Laser-Produced Plasma in Confined Geometry
,” J. Appl. Phys.
, 68
(2
), pp. 775
–784
.14.
Yang
, G. W.
, 2007, “Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals
,” Prog. Mater. Sci.
, 52
(4
), pp. 648
–698
.15.
Ballard
, P.
, Fournier
, J.
, Fabbro
, R.
, and Frelat
, J.
, 1991, “Residual-Stresses Induced by Laser-Shocks
,” J. Phys. III
, 1
(C3
), pp. 487
–494
.16.
Peyre
, P.
, Fabbro
, R.
, Merrien
, P.
, and Lieurade
, H. P.
, 1996, “Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,” Mater. Sci. Eng., A
, 210
(1–2
), pp. 102
–113
.17.
Berthe
, L.
, Fabbro
, R.
, Peyre
, P.
, and Bartnicki
, E.
, 1998, “Experimental Study of the Transmission of Breakdown Plasma Generated During Laser Shock Processing
,” Eur. Phys. J.: Appl. Phys.
, 3
(2
), pp. 215
–218
.18.
Ye
, C.
, Liao
, Y. L.
, and Cheng
, G. J.
, 2010, “Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160
,” Adv. Eng. Mater.
, 12
(4
), pp. 291
–297
.19.
Berthe
, L.
, Sollier
, A.
, Peyre
, P.
, Fabbro
, R.
, and Bartnicki
, E.
, 2000, “The Generation of Laser Shock Waves in a Water-Confinement Regime With 50 ns and 150 ns XeCl Excimer Laser Pulses
,” J. Phys. D.
, 33
(17
), pp. 2142
–2145
.20.
Peyre
, P.
, Berthe
, L.
, Fabbro
, R.
, and Sollier
, A.
, 2000, “Experimental Determination by PVDF and EMV Techniques of Shock Amplitudes Induced by 0.6–3 ns Laser Pulses in a Confined Regime With Water
,” J. Phys. D.
, 33
(5
), pp. 498
–503
.21.
Hong
, Z. K.
, Farooq
, A.
, Barbour
, E. A.
, Davidson
, D. F.
, and Hanson
, R. K.
, 2009, “Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H2O Near 2.5 μm
,” J. Phys. Chem. A
, 113
(46
), pp. 12919
–12925
.22.
Mao
, X. L.
, and Russo
, R. E.
, 1997, “Observation of Plasma Shielding by Measuring Transmitted and Reflected Laser Pulse Temporal Profiles
,” Appl. Phys. A
, 64
(1
), pp. 1
–6
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.