In the current work, an inverse analysis on the primary shear zone was introduced to determine the five constants in Johnson–Cook’s material constitutive equation under the conditions of metal cutting. Based on the detailed analysis on the boundary conditions of the velocity and shear strain rate fields, Oxley’s “equidistant parallel-sided” shear zone model was revisited. A more realistic nonlinear shear strain rate distribution has been proposed under the frame of nonequidistant primary shear zone configuration, so that all the boundary conditions can be satisfied. Based on the presented analysis, the shear strain, shear strain rate and temperature at the main shear plane were calculated. In conjugation with the measured cutting forces and chip thickness, a genetic algorithm (GA) based optimization program has been developed for the system identification. In order to verify the effectiveness of the developed algorithm, the obtained material constants were used in a forward analytical simulation. The acceptable agreement with experimental data validates the proposed method.

References

1.
Pujana
,
J.
,
Arrazola
,
P. J.
,
M’saoubi
,
R.
, and
Chandrasekaran
,
H.
,
2007
, “
Analysis of the Inverse Identification of Constitutive Equations Applied in Orthogonal Cutting Process
,”
Int. J. Mach. Tools Manuf.
,
47
(
14
), pp.
2153
2161
.10.1016/j.ijmachtools.2007.04.012
2.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
,
2001
, “
Process Modeling in Machining. Part I: Determination of Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1511
1534
.10.1016/S0890-6955(01)00016-5
3.
Sartkulvanich
,
P.
,
Koppka
,
F.
, and
Altan
,
T.
,
2004
, “
Determination of Flow Stress for Metal Cutting Simulation—A Progress Report
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
61
71
.10.1016/S0924-0136(03)00845-8
4.
Chandrasekaran
,
H.
,
M’saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
131
145
.10.1081/MST-200051380
5.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,”
J. Manuf. Sci. Eng.
,
121
(
4
), pp.
577
585
.10.1115/1.2833062
6.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M. A.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach Tools Manuf.
,
42
(
12
), pp.
1373
1383
.10.1016/S0890-6955(02)00046-9
7.
Ozel
,
T.
, and
Zeren
,
E.
,
2006
, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
J. Manuf. Sci. Eng.
,
128
(
1
), pp.
119
129
.10.1115/1.2118767
8.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
, New York.
9.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.10.1063/1.1707586
10.
Dudzinski
,
D.
, and
Molinari
,
A.
,
1997
, “
A Modelling of Cutting for Viscoplastic Materials
,”
Int. J. Mech. Sci.
,
39
(
4
), pp.
369
389
.10.1016/S0020-7403(96)00043-4
11.
Astakhov
,
V. P.
,
Osman
,
M. O. M.
, and
Hayajneh
,
M. T.
,
2001
, “
Re-Evaluation of the Basic Mechanics of Orthogonal Metal Cutting: Velocity Diagram, Virtual Work Equation and Upper-Bound Theorem
,”
Int. J. Mach. Tools Manuf.
,
41
(
3
), pp.
393
418
.10.1016/S0890-6955(00)00084-5
12.
Boothroyd
,
G.
,
1963
, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
,
177
(
29
), pp.
789
810
.10.1243/PIME_PROC_1963_177_058_02
13.
Johnson
,
G. J.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, Netherlands
, pp.
541
547
.
14.
Holland
,
J. H.
,
1992
,
Adaption in Natural and Artificial Systems
,
MIT Press
,
Cambridge, MA
.
15.
Hillier
,
F. S.
, and
Lieberman
,
G. J.
,
2005
,
Introduction to Operation Research
, 8th ed.,
McGraw-Hill, New York
.
16.
Jaspers
,
S.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2-3
), pp.
322
330
.10.1016/S0924-0136(01)01228-6
17.
Kishawy
,
H. A.
,
Pang
,
L.
, and
Ei-Wardany
,
T. I.
,
2009
, “
Forces in End Milling: A Johnson-Cook’s Constitutive Law Analysis
,”
Int. J. Mater. Eng. Technol.
,
1
(
2
), pp.
171
190
.
18.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
,
2009
, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12-13
), pp.
5305
5312
.10.1016/j.jmatprotec.2009.03.020
19.
Ivester
,
R. W.
,
Kennedy
,
M.
,
Davies
,
M.
,
Stevenson
,
R.
,
Thiele
,
J.
,
Furness
,
R.
, and
Athavale
,
S.
,
2000
, “
Assessment of Machining Models: Progress Report
,”
Mach. Sci. Technol.: Int. J.
,
4
(
3
), pp.
511
538
.10.1080/10940340008945720
You do not currently have access to this content.