Sheet metal forming of parts with microscale dimensions is gaining importance due to the current trend toward miniaturization, especially in the electronics industry. In microforming, although the process dimensions are scaled down, the polycrystalline material stays the same (e.g., the grain size remains constant). When the specimen feature size approaches the grain size, the properties of individual grains begin to affect the overall deformation behavior. This results in inhomogeneous deformation and increased data scatter of the process parameters. In this research, the influence of the specimen size and the grain size on the distribution of plastic deformation through the thickness during a three-point microbending process is investigated via digital image correlation (DIC). Results showed that with miniaturization, a decrease in the strain gradient existed which matched previous research with respect to microhardness measurement.

References

1.
Component Engineering Inc, http://www.componenteng.com/
2.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H.
,
Liu
,
W. K.
, and
Swanson
,
A.
,
2004
, “
Microforming—Experimental Investigation of the Extrusion Process for Micropins and Its Numerical Simulation Using RKEM
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
642
652
.10.1115/1.1813468
3.
Diehl
,
A.
,
Engel
,
U.
, and
Geiger
,
M.
,
2008
, “
Investigation of the Spring-Back Behaviour in Metal Foil Forming
,”
J. Eng. Manuf.
,
222
(
1
), pp.
83
91
.10.1243/09544054JEM838
4.
Cavaliere
,
P.
,
Gabrielli
,
F.
, and
Fratini
,
L.
,
2000
, “
Bending of Very Thin Sheets: The Influence of Thickness on Material Characterisation and Elastic Springback
,”
Proceedings of the 8th International Conference on Metal Forming
,
Krakow
,
Poland
, pp.
405
410
.
5.
Kocanda
,
A.
, and
Prejs
,
T.
,
2000
, “
The Effect of Miniaturization on the Final Geometry of the Bend Products
,”
Metal Forming 2000
,
M.
Pietrzyke
, ed.,
Balkema
,
Rotterdam
, pp.
375
378
.
6.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann.
,
50
(
2
), pp.
445
462
.10.1016/S0007-8506(07)62991-6
7.
Raulea
,
L. V.
,
Govaert
,
L. E.
, and
Baaijens
,
F. P. T.
,
1999
, “
Grain and Specimen Size Effects in Processing Metal Sheets
,”
Advanced Technology of Plasticity, Proceedings of 6th ICTP
, Sept. 19–24, Vol. 2, pp.
939
944
.
8.
Gau
,
J. T.
,
Principe
,
C.
, and
Wang
,
J.
,
2007
, “An Experimental Study on Size Effects on Flow Stress and Formability,”
J. Mater. Process. Technol.
,
184
(
1-3
), pp.
42
46
.10.1016/j.jmatprotec.2006.11.003
9.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford
,
London
, pp.
288
294
.
10.
Kals
,
T. A.
, and
Eckstein
,
R.
,
2000
, “
Miniaturization in Sheet Metal Working
,”
J. Mater. Process. Technol.
,
103
, pp.
95
101
.10.1016/S0924-0136(00)00391-5
11.
Parasiz
,
S.
,
VanBenthysen
,
R.
, and
Kinsey
,
B. L.
,
2010
, “
Deformation Size Effects Due to Specimen and Grain Size in Microbending
,”
ASME J. Manuf. Sci. Eng.
,
32
(
1
), p.
011018
.10.1115/1.4000943
12.
Correlated Solutions, 2009, “VIC 2D Guide,” www.correlatedsolutions.com
13.
ASTM Standards
,
2008
,
Metals Test Methods and Analytical, Procedures
, ASTM 03.01, E112-96,
Philadelphia
, pp.
290
315
.
14.
Wang
,
L.
,
2010
, “
Investigation of Strain Gradients and Magnitudes During Microbending
,” M.S. thesis,
University of New Hampshire
,
Durham, NH
.
15.
Onyancha
,
R. M.
, and
Kinsey
,
B. L.
,
2008
, “
Experimental Investigation of Microbending Process
,”
Trans. North Am. Manuf. Res. Inst. SME
,
36
, pp.
65
71
.
You do not currently have access to this content.