The anisotropic behavior of the material microstructure when processing multiphase materials at microscale becomes an important factor that has to be considered throughout the machining process. This is especially the case when chip-loads and machined features are comparable in size to the cutting edge radius of the tool, and also similar in scale to the grain sizes of the phases present within the material microstructure. Therefore, there is a real need for reliable models, which can be used to simulate the surface generation process during microendmilling of multiphase materials.This paper presents a model to simulate the surface generation process during microendmilling of multiphase materials. The proposed model considers the effects of the following factors: the geometry of the cutting tool, the feed rate, and the workpiece material microstructure. Especially, variations of the minimum chip thickness at phase boundaries are considered by feeding maps of the material microstructure into the model. Thus, the model takes into account these variations that alter the machining mechanism from a proper cutting to ploughing and vice versa, and are the main cause of microburr formation. By applying the proposed model, it is possible to estimate more accurately the resulting roughness because the microburr formation dominates the surface generation process during microendmilling of multiphase materials. The proposed model was experimentally validated by machining two different samples of dual-phase steel under a range of chip-loads. The roughness of the resulting surfaces was measured and compared to the predictions of the proposed model under the same cutting conditions. The results show that the proposed model accurately predicts the roughness of the machined surfaces by taking into account the effects of material multiphase microstructure. Also, the developed model successfully elucidates the mechanism of microburr formation at the phase boundaries, and quantitatively describes its contributions to the resulting surface roughness after microendmilling.

References

1.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehman
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
666
678
.10.1115/1.1813469
2.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
202
209
.10.1115/1.1556402
3.
Pham
,
D. T.
,
Dimov
,
S. S.
,
Popov
,
K. B.
, and
Elkaseer
,
A. M. A.
,
2008
, “
Effects of Microstructure on Surface Roughness and Burr Formation in Micromilling: A Review
,”
Proceedings of IPROMS
,
Cardiff, UK
, pp.
270
275
.
4.
Li
,
H.
,
Lai
,
X.
,
Li
,
C.
,
Feng
,
J.
, and
Ni
,
J.
,
2008
, “
Modelling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling
,”
J. Micromech. Microeng.
,
18
, p.
025006
.10.1088/0960-1317/18/2/025006
5.
Liu
,
K.
, and
Melkote
,
S. N.
,
2006
, “
Effect of Plastic Side Flow on Surface Roughness in Microturning Process
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1778
1785
.10.1016/j.ijmachtools.2005.11.014
6.
Vogler
,
M.
,
Kapoor
,
S.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Microendmilling, Part 1: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
685
694
.10.1115/1.1813470
7.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2007
, “
Model-Based Analysis of the Surface Generation in Microendmilling-Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
453
460
.10.1115/1.2716705
8.
Vogler
,
M.
,
Kapoor
,
S.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Microendmiling, Part 2: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
695
705
.10.1115/1.1813471
9.
Furukawa
,
Y.
, and
Moronuki
,
N.
,
1988
, “
Effect of Material Properties on Ultra Precise Cutting Processes
,”
Ann. CIRP
,
37
(
1
), pp.
113
116
.10.1016/S0007-8506(07)61598-4
10.
Popov
,
K. B.
,
Dimov
,
S. S.
,
Pham
,
D. T.
,
Minev
,
R. M.
,
Rosochowski
,
A.
, and
Olejnik
,
L.
,
2006
, “
Micromilling: Material Microstructure Effects
,”
Proc. IMechE, Part B
,
220
, pp.
1807
1813
.10.1243/09544054JEM683
11.
Uhlmann
,
E.
,
Piltz
,
S.
, and
Schauer
,
K.
,
2005
, “
Micro Milling of Sintered Tungsten–Copper Composite Materials
,”
J. Mater. Process. Technol.
,
167
, pp.
402
407
.10.1016/j.jmatprotec.2005.05.022
12.
Gillibrand
,
D.
,
1979
, “
Micro-Defects on Machined Carbon Steel Surfaces
,”
Tribol. Int.
,
12
(
4
), pp.
165
169
.10.1016/0301-679X(79)90179-8
13.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
Surface Defects During Microcutting
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1378
1387
.10.1016/j.ijmachtools.2005.10.001
14.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2007
, “
Grain Size and Orientation Effects When Microcutting AISI 1045 Steel
,”
CIRP Ann.
,
56
(
1
), pp.
57
60
.10.1016/j.cirp.2007.05.016
15.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
Chip Formation During Microscale Cutting of a Medium Carbon Steel
,”
Int. J. Mach. Tools and Manuf.
,
46
, pp.
467
481
.10.1016/j.ijmachtools.2005.07.019
16.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2007
, “
Modeling the Effects of Microstructure in Metal Cutting
,”
Int. J. Mach. Tools and Manuf.
,
47
, pp.
368
375
.10.1016/j.ijmachtools.2006.03.006
17.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
The Effect of Microstructure on Chip Formation and Surface Defects in Microscale, Mesoscale, and Macroscale Cutting of Steel
,”
CIRP Ann.
,
55
(
1
), pp.
97
102
.10.1016/S0007-8506(07)60375-8
18.
Pham
,
D. T.
,
Elkaseer
,
A. M. A.
,
Popov
,
K. B.
,
Dimov
,
S. S.
,
Olejnik
,
L.
, and
Rosochowski
,
A.
,
2009
, “
An Experimental and Statistical Study of the Factors Affecting Surface Roughness in the Micromilling Process
,”
Proceedings of IPROMS
(to be published).
19.
Son
,
S. M.
,
Lim
,
H. S.
, and
Ahn
,
J. H.
,
2005
, “
Effects of Friction Coefficient on the Minmum Cutting Thickness in Micro Cutting
,”
Int. J. Mach. Tools Manuf.
,
45
, pp.
529
535
.10.1016/j.ijmachtools.2004.09.001
20.
Jasinevicius
,
R. G.
,
de Campos
,
G. P.
,
Montanari
,
L.
,
Tsukamoto
,
R.
,
Garcia
,
J. P.
,
Camargo
,
R.
,
Duduch
,
J. G.
, and
Porto
,
A. J. V.
,
2003
, “
Influence of the Mechanical and Metallurgical State of an Al-Mg Alloy on the Surface Integrity in Ultraprecision Machining
,”
J. Braz. Soc. Mech. Sci. & Eng.
,
25
(
3
), pp.
222
228
.10.1590/S1678-58782003000300002
You do not currently have access to this content.