Process physics understanding, real time monitoring, and control of various manufacturing processes, such as battery manufacturing, are crucial for product quality assurance. While ultrasonic welding has been used for joining batteries in electric vehicles (EVs), the welding physics, and process attributes, such as the heat generation and heat flow during the joining process, is still not well understood leading to time-consuming trial-and-error based process optimization. This study is to investigate thermal phenomena (i.e., transient temperature and heat flux) by using micro thin-film thermocouples (TFTC) and thin-film thermopile (TFTP) arrays (referred to as microsensors in this paper) at the very vicinity of the ultrasonic welding spot during joining of three-layered battery tabs and Cu buss bars (i.e., battery interconnect) as in General Motors's (GM) Chevy Volt. Microsensors were first fabricated on the buss bars. A series of experiments were then conducted to investigate the dynamic heat generation during the welding process. Experimental results showed that TFTCs enabled the sensing of transient temperatures with much higher spatial and temporal resolutions than conventional thermocouples. It was further found that the TFTPs were more sensitive to the transient heat generation process during welding than TFTCs. More significantly, the heat flux change rate was found to be able to provide better insight for the process. It provided evidence indicating that the ultrasonic welding process involves three distinct stages, i.e., friction heating, plastic work, and diffusion bonding stages. The heat flux change rate thus has significant potential to identify the in-situ welding quality, in the context of welding process monitoring, and control of ultrasonic welding process. The weld samples were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to study the material interactions at the bonding interface as a function of weld time and have successfully validated the proposed three-stage welding theory.
Skip Nav Destination
GM Global R&D,
30500 Mound Road,
Article navigation
October 2013
Research-Article
Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Microsensors
Hongrui Jiang,
Hongrui Jiang
Department of Mechanical Engineering,
University of Wisconsin-Madison,
University of Wisconsin-Madison,
1513 University Avenue
,Madison, WI 53706
Search for other works by this author on:
Jeffrey A. Abell,
GM Global R&D,
30500 Mound Road,
Jeffrey A. Abell
Manufacturing Systems Research Lab
,GM Global R&D,
30500 Mound Road,
Warren, MI 48090-9055
Search for other works by this author on:
Xiaochun Li
Xiaochun Li
Department of Mechanical Engineering,
e-mail: xcli@engr.wisc.edu
University of Wisconsin-Madison
,1513 University Avenue
,Madison, WI 53706
e-mail: xcli@engr.wisc.edu
Search for other works by this author on:
Hongrui Jiang
Department of Mechanical Engineering,
University of Wisconsin-Madison,
University of Wisconsin-Madison,
1513 University Avenue
,Madison, WI 53706
Jeffrey A. Abell
Manufacturing Systems Research Lab
,GM Global R&D,
30500 Mound Road,
Warren, MI 48090-9055
Xiaochun Li
Department of Mechanical Engineering,
e-mail: xcli@engr.wisc.edu
University of Wisconsin-Madison
,1513 University Avenue
,Madison, WI 53706
e-mail: xcli@engr.wisc.edu
Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received July 5, 2012; final manuscript received April 19, 2013; published online September 16, 2013. Assoc. Editor: Robert Gao.
J. Manuf. Sci. Eng. Oct 2013, 135(5): 051015 (8 pages)
Published Online: September 16, 2013
Article history
Received:
July 5, 2012
Revision Received:
April 19, 2013
Citation
Li, H., Choi, H., Ma, C., Zhao, J., Jiang, H., Cai, W., Abell, J. A., and Li, X. (September 16, 2013). "Transient Temperature and Heat Flux Measurement in Ultrasonic Joining of Battery Tabs Using Thin-Film Microsensors." ASME. J. Manuf. Sci. Eng. October 2013; 135(5): 051015. https://doi.org/10.1115/1.4024816
Download citation file:
Get Email Alerts
Evaluation of Contrived Wear Methodology in End Milling of Inconel 718
J. Manuf. Sci. Eng
Surface Integrity Analysis in Grinding of Dual-phase High Entropy Alloy
J. Manuf. Sci. Eng
Related Articles
Study on Embedding and Integration of Microsensors Into Metal Structures for Manufacturing Applications
J. Manuf. Sci. Eng (April,2007)
High-Frequency Heat Flux Sensor Calibration and Modeling
J. Fluids Eng (December,1995)
Development of Metal Embedded Microsensors by Diffusion Bonding and Testing in Milling Process
J. Manuf. Sci. Eng (December,2008)
Tool Embedded Thin Film Microsensors for Monitoring Thermal Phenomena at Tool-Workpiece Interface During Machining
J. Manuf. Sci. Eng (April,2011)
Related Proceedings Papers
Related Chapters
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries
Transient Temperature and Heat Flux Measurement Using Thin-Film Microsensors
Ultrasonic Welding of Lithium-Ion Batteries
Introduction
Ultrasonic Welding of Lithium-Ion Batteries