Orienting devices for vibratory bowl feeders are still the most widely used system for the automated sorting and feeding of small parts. The design process of these orienting devices has recently been supported by simulation methods. However, this merely shifts the well-known trial-and-error-based adaption of the orienting device's geometry into virtual world. Yet, this does not provide optimal design and, furthermore, requires strong involvement of the developer due to manual shape variation. This paper proposes an optimization algorithm for the automated simulation-based shape optimization of orienting devices for vibratory bowl feeders. First, general formalisms to state the multiobjective optimization problem for arbitrary types of orienting devices and feeding parts are provided. Then, the implementation of the algorithm is described based on Bullet Physics Engine and random search optimization technique. Finally, comparison of simulation results with experimental data point out good accuracy and, thus, great potential of the developed shape optimization software.

References

1.
Schmid
,
S.
,
2006
, “
Automatisierte Ordnungs- und Kommissionierzelle zur hochflexiblen Bereitstellung von Werkstücken in der Montage
,” Jost Jetter, Heimsheim, IPA-IAO Forschung und Praxis 435.
2.
Hesse
,
S.
,
2006
, “
Automatische Montagemaschinen
,”
Montage in der industriellen Produktion
,
B. W.
Lotter
, Hrsg.,
Springer
,
Heidelberg, Germany
, pp.
219
307
.
3.
Yeong
,
M. Y.
, and
De Vries
,
W. R.
,
1994
, “
A Methodology for Part Feeder Design
,”
Ann. CIRP
,
43
(
1
), pp.
19
22
.10.1016/S0007-8506(07)62154-4
4.
Boothroyd
,
G.
,
2005
,
Assembly Automation and Product Design
,
Taylor & Francis
,
Boca Raton, FL
.
5.
Berkowitz
,
D. R.
, and
Canny
,
J.
,
1996
, “
Designing Parts Feeders Using Dynamic Simulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’96)
,
Minneapolis, MN
, April 1996, IEEE, New York, pp.
1127
1132
.
6.
Boothroyd
,
G.
, and
Ho
,
C.
,
1977
, “
Natural Resting Aspects of Parts for Automatic Handling
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
314
317
.10.1115/1.3439214
7.
Weiss
,
K.
,
1983
,
Entwicklung flexibler Ordnungssysteme für die Automatisierung der Werkstückhandhabung in der Klein- und Mittelserienfertigung
,
Springer
,
Berlin, Germany
, IPA-IAO Forschung und Praxis 67.
8.
Wiegley
,
J.
,
Rao
,
A.
, and
Goldberg
,
K.
,
1992
, “
Computing a Statistical Distribution of Stable Poses for a Polyhedron
,”
30th Annual Allerton Conference on Communications, Control and Computing
,
Allerton, IL
, September 1992, pp.
1
8
.
9.
Ngoi
,
B. K. A.
,
Lim
,
L. E. N.
, and
Lee
,
S. S. G.
,
1995
, “
Analysing the Natural Resting Aspects of a Complex Part
,”
Int. J. Prod. Res.
,
33
(
11
), pp.
3163
3172
.10.1080/00207549508904866
10.
Mirtich
,
B.
,
1996
, “
Hybrid Simulation: Combining Constraints and Impulses
,” Technical Report, Department of Computer Science, University of California, Berkley, CA.
11.
Ngoi
,
B. K. A.
,
Lim
,
L. E. N.
, and
Ee
,
J. T.
,
1997
, “
Analysis of Natural Resting Aspects of Parts in a Vibratory Bowl Feeder—Validation of “Drop Test”
,”
Int. J. Adv. Manuf. Technol.
,
13
, pp.
300
310
.10.1007/BF01179612
12.
Goldberg
,
K.
,
Mirtich
,
B.
,
Zhuang
,
Y.
,
Craig
,
J.
,
Carlisle
,
B.
, and
Canny
,
J.
,
1999
, “
Part Pose Statistics: Estimators and Experiments
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
849
857
.10.1109/70.795790
13.
Boothroyd
,
G.
,
Poli
,
G.
, and
Murch
,
L. E.
,
1976
, “
Handbook of Feeding and Orienting Techniques for Small Parts
,” Department of Mechanical Engineering, University of Massachusetts, Amherst, MA.
14.
Boothroyd
,
G.
, and
Murch
,
L. E.
,
1970
, “
Performance of an Orienting Device Employed in Vibratory Bowl Feeders
,”
ASME J. Eng. Ind.
,
92
(
3
), pp.
694
698
.10.1115/1.3427832
15.
Frank
,
H.-E.
,
1975
,
Handhabungseinrichtungen
,
Krausskopf
,
Mainz, Germany
.
16.
Murch
,
L. E.
, and
Poli
,
C.
,
1977
, “
Analysis of Feeding and Orienting Systems for Automatic Assembly—Part 2: Vibratory-Bowl Feeding Systems
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
308
313
.10.1115/1.3439213
17.
Chen
,
Y.-T.
, and
Young
,
R. E.
,
1988
, “
PACIES: A Part Code Identification Expert System
,”
IIE Trans.
,
20
(
2
), pp.
132
136
.10.1080/07408178808966161
18.
Ou-Yang
,
C.
, and
Maul
,
G. P.
,
1993
, “
A Computer Analysis of Orientation Devices for Vibratory Bowl Feeders
,”
Int. J. Prod. Res.
,
31
(
3
), pp.
555
578
.10.1080/00207549308956744
19.
Lim
,
L. E. N.
,
Ngoi
,
B. K. A.
,
Lee
,
S. S. G.
,
Lye
,
S. W.
, and
Tan
,
P. S.
,
1994
, “
A Computer-Aided Framework for the Selection and Sequencing of Orientating Devices for the Vibratory Bowl Feeder
,”
Int. J. Prod. Res.
,
32
(
11
), pp.
2513
2524
.10.1080/00207549408957081
20.
Tan
,
P. S.
,
Ngoi
,
B. K. A.
,
Lee
,
S. S. G.
, and
Lim
,
L. E. N.
,
1995
, “
A Knowledge-based Advisor for the Automatic Selection and Sequencing of Orienting Devices for Vibratory Feeding
,”
Eng. Applic. Artif. Intell.
,
8
(
1
), pp.
1
13
.10.1016/0952-1976(94)00053-P
21.
La Brooy
,
R.
, and
Jiang
,
C.
,
2009
, “
Expert System for Vibratory Bowl Feeder Tooling
,”
N. Eng. J.
,
12
(
2
), pp.
13
17
. Available at: http://www.iie.com.au/admin%5Cuploaddocs%5Cne_october_2009__for_web.pdf
22.
Wolfsteiner
,
P.
, and
Pfeiffer
,
F.
,
1997
, “
Dynamics of a Vibratory Feeder
,”
Proceedings of ASME Design Engineering Technical Conference (DETC '97)
,
Sacramento, CA
, September 1997, ASME, New York, pp. 1–9.
23.
Gazic
,
Z.
,
2009
,
Nichtlineare Dynamik von Vibrationsförderern
,
VDI-Verlag
,
Düsseldorf, Germany
, Fortschritt-Berichte VDI, Reihe, 13 Nr. 55.
24.
Dallinger
,
N.
,
Risch
,
T.
, and
Nendel
,
K.
,
2012
, “
Simulation of Conveying Processes in Vibratory Conveyors
,”
Logistics J.
,
2012
, pp.
1
5
.10.2195/lj_Proc_dallinger_de_201210_01
25.
Jiang
,
M. H.
,
Chua
,
P. S. K.
, and
Tan
,
F. L.
,
2003
, “
Simulation Software for Parts Feeding in a Vibratory Bowl Feeder
,”
Int. J. Prod. Res.
,
41
(
9
), pp.
2037
2055
.10.1080/0020754031000123895
26.
Chua
,
P. S. K.
, and
Tan
,
F. L.
,
2006
, “
Dynamic Computer Simulation of Parts Feeding on a Vibratory Bowl Feeder
,”
J. Inst. Eng. (Malaysia)
,
67
(
2
), pp.
55
60
. Available at: http://dspace.unimap.edu.my/dspace/bitstream/123456789/13653/1/055-060_dynamic%20computer.pdf.pdf
27.
Chen
,
R.
,
Chen
,
L.
,
Wang
,
X.
, and
Chen
,
X.
,
2011
, “
Dynamic Design and Simulation of a Vibratory Hopper
,”
IEEE 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Deng Feng, China, August 2011, IEEE
,
New York
, pp.
3935
3938
.
28.
Berkowitz
,
D. R.
, and
Canny
,
J.
,
1997
, “
A Comparison of Real and Simulated Designs for Vibratory Parts Feeding
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’97), Albuquerque, NM, April 1997, IEEE
,
New York
, pp.
2377
2382
.
29.
Reinhart
,
G.
, and
Hofmann
,
D.
,
2012
, “
Physically Based Simulation in Parts Feeding
,”
Werkstattstechnik Online
,
102
(
6
), pp.
435
439
. Available at: http://www.werkstattstechnik.de/wt/article.php?data[article_id]=67965
30.
Hofmann
,
D.
, and
Reinhart
,
G.
,
2013
, “
Simulation-Based Design Method for Orienting Devices
,”
Zeitschrift für wirtschaftlichen Fabrikbetrieb ZWF
,
108
(
3
), pp. 148–153. Available at: http://www.zwf-online.de/ta003/na20120320125076/ar21342133957-16298/Simulationsgestuetzte-Auslegungsmethode-fuer-Ordnungsschikanen_archiv.html
31.
Ahrens
,
H.
,
1983
,
Grundlagenuntersuchungen zur Werkstückzuführung mit Vibrationswendelförderern und Kriterien zur Geräteauslegung
,
VDI-Verlag
,
Düsseldorf, Germany
, Fortschritt-Bericht VDI, Reihe 13, Nr. 23.
32.
Khakbaz-Nejad
,
R. J.
,
2003
, “
The Effect of the Interaction of Part Geometry and Vibratory Feeding Parameters on the Feed Rate of Parts in a Vibratory Bowl Feeder
,” Dissertation, The Ohio State University, Columbus, OH.
33.
Risch
,
T.
,
2011
, “
Zweidimensionale Bewegungsformen in der Vibrationsfördertechnik
,” Dissertation, Institut für Fördertechnik und Kunststoffe, Technische Universität Chemnitz, Chemnitz, Germany.
34.
Loy
,
M.
, and
Reinhart
,
G.
,
2008
, “
Flexible Feeding of Complex Parts
,”
2nd CIRP Conference on Assembly Technologies and Systems (CATS 2008)
,
Toronto, Ontario
, September 2008, pp.
346
355
.
35.
Reinhart
,
G.
, and
Loy
,
M.
,
2010
, “
Design of a Modular Feeder for Optimal Operating Performance
,”
CIRP J. Manuf. Sci. Tech.
,
3
(
3
), pp.
191
195
.10.1016/j.cirpj.2010.09.003
36.
Lee
,
K. M.
, and
Qian
,
Y.
,
1998
, “
Intelligent Vision-Based Part-Feeding on Dynamic Pursuit of Moving Objects
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
640
647
.10.1115/1.2830169
37.
Rimai
,
B. E.
, and
Cipra
,
R. J.
,
2011
, “
On the Spatial Modeling of a Vibratory Micro-Pin Feeder Using Rigid-Body Dynamics
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2011), Vol. 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B
,
Washington, DC
, August 2011, pp.
247
255
.
38.
Murch
,
L. E.
, and
Boothroyd
,
G.
,
1971
, “
Predicting Efficiency of Parts Orienting Systems
,”
Autom.
,
18
, pp.
55
57
.
39.
Frank
,
H.-E.
,
1974
, “
Das Verhalten von Werkstücken bei automatisierter Handhabung in der Fertigung
,” Dissertation, Universität Stuttgart, Stuttgart, Germany.
40.
Rao
,
S. S.
,
2009
,
Engineering Optimization
, 4th ed.,
Wiley
,
Hoboken, New Jersey
.
41.
Ashlock
,
D.
,
2006
,
Evolutionary Computation for Modeling and Optimization
,
Springer, Berlin
,
Interdisciplinary Applied Mathematics Series 200
.
42.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.10.1126/science.220.4598.671
43.
Khan
,
W. A.
, and
Hayhurst
,
D. R.
,
2000
, “
Two- and Three-Dimensional Path Optimization for Production Machinery
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
244
252
.10.1115/1.538901
44.
Swift
,
K. G.
, and
Redford
,
A. H.
,
1978
, “
Classification for Automatic Assembly of Small Products
,”
Ann. CIRP
,
27
(
1
), pp.
435
440
. Available at: http://www.cirp.net/component/cirppubli/?task=searchpublic&year=1978
You do not currently have access to this content.