Laser cutting of aluminum foam with 9 mm thickness is carried out and thermal stress field developed in the cut section is simulated using finite element code. Morphological changes in the cut section are examined through optical and scanning electron microscopes. The oxide compounds formed at the cut section during the cutting are identified using X-ray diffraction. It is found that parallel sided cut edges are resulted during laser cutting. The maximum von Mises stress in the cut section is on the order of few MPa, which is close to the yielding limit of the workpiece material. Some small scattered sideways burning resulting in local thermal erosion along the cut edges is observed.
Issue Section:
Research Papers
Topics:
Aluminum,
Cooling,
Cutting,
Laser cutting,
Lasers,
Temperature,
Stress,
Thermal stresses,
Shapes
References
1.
Kim
, S. Y.
, Paek
, J. W.
, and Kang
B. H.
, 2003
, “Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,” IEEE Trans. Compon. Packag. Technol.
, 26
, pp. 262
–267
.10.1109/TCAPT.2003.8095402.
Deqing
, W.
, Weiwei
, X.
, Xiangjun
, M.
, and Ziyuan
, S.
, 2005
, “Cell Structure and Compressive Behavior of an Aluminum Foam
,” J. Mater. Sci.
, 40
, pp. 3475
–3480
.10.1007/s10853-005-2852-43.
Campana
, G.
, Bertuzzi
, G.
, Tani
, G.
, Bonaccorsi
, L. M.
, and Proverbio
, E.
, 2008
, “Experimental Investigation Into Laser Welding of Aluminum Foam Filled Steel Tubes
,” Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, MetFoam 2007
, pp. 453
–456
.4.
Chaurasia
, S.
, Tripathi
, S.
, Munda
, D. S.
, Mishra
, G.
, Murali
, C. G.
, Gupta
, N. K.
, Dhareshwar
, L. J.
, Rossall
, A. K.
, Tallents
, G. J.
, Singh
, R.
, Kohli
, D. K.
, and Khardekar
, R. K.
, 2010
, “Laser Interaction With Low-Density Carbon Foam
,” Pramana, J. Phys.
, 75
(6
), pp. 1191
–1196
.10.1007/s12043-010-0205-65.
Yoshida
, Y.
, Yajima
, Y.
, Hashidate
, H.
, Ogura
, H.
, and Ueda
, S.
, 2002
, “Hole Drilling of Glass-Foam Substrates With Laser
,” Proc. SPIE
4426
, 154
–157
.10.1117/12.4568036.
Guglielmotti
, A.
, Quadrini
, F.
, Squeo
, E. A.
, and Tagliaferri
, V.
, 2009
, “Laser Bending of Aluminum Foam Sandwich Panels
,” Adv. Eng. Mater.
, 11
(11
), pp. 902
–906
.10.1002/adem.2009001117.
Kathuria
, Y. P.
, 2003
, “A Preliminary Study on Laser Assisted Aluminum Foaming
,” J. Mater. Sci.
, 38
(13
), pp. 2875
–2881
.10.1023/A:10244885038568.
Carcel
, B.
, Carcel
, A. C.
, Perez
, I.
, Fernandez
, E.
, Barreda
, A.
, Sampedro
, J.
, and Ramos
, J. A.
, 2009
, “Manufacture of Metal Foam Layers by Laser Metal Deposition
,” Proc. SPIE
7131
, pp. 7131–7157.10.1117/12.8167029.
Ocelík
, V.
,van Heeswijk
, V.
, De Hosson
, J.
Th.
M.
, and Csach
, K.
, 2004
, “Foam Coating on Aluminum Alloy With Laser Cladding
,” J. Laser Appl.
, 16
(2
), pp. 79
–84
.10.2351/1.171088310.
Gamaly
, E. G.
, Rode
, A. V.
, and Luther-Davies
, B.
, 2000
, “Formation of Diamond-Like Carbon Films and Carbon Foam by Ultrafast Laser Ablation
,” Laser Part. Beams
, 18
(2
), pp. 245
–254
.10.1017/S026303460018213811.
Yilbas
, B. S.
, and Arif
, A. F. M.
, 2009
, “Laser Cutting of Steel and Thermal Stress Development
,” Opt. Laser Technol.
, 43
(4
), pp. 830
–837
.10.1016/j.optlastec.2010.11.00212.
Yilbas
, B. S.
, Arif
, A. F. M.
, and Aleem
, B. J.
, 2009
, “Laser Cutting of Large Aspect Ratio Rectangular Blank in Thick Sheet Metal: Thermal Stress Analysis
,” Proc. Inst. Mech. Eng., Part B (J. Eng. Manuf.)
, 223
, pp. 63
–71
.10.1243/09544054JEM120313.
Yilbas
, B. S.
, Akhtar
, S. S.
, and Karatas
, C.
, 2011
, “Laser Cutting of Small Diameter Holes Into Alumina Tiles: Thermal Stress Analysis
,” ASME J. Manuf. Sci. Eng.
, 133
(2
), p. 024503.10.1115/1.400373714.
Yilbas
, B. S.
, Akhtar
, S. S.
, and Karatas
, C.
, 2012
, “Laser Straight Cutting of Alumina Tiles: Thermal Stress Analysis
,” Int. J. Adv. Manuf. Technol.
, 58
, pp. 1019
–1030
.10.1007/s00170-011-3439-715.
Mukarami
, T.
, Tsumura
, T.
, Ikeda
, T.
, Nakajima
, H.
, and Nakata
, K.
, 2007
, “Ansitropic Fusion Profile and Joint Strength of Lotus-Type Porous Magnesium by Laser Welding
,” Mater. Sci. Eng., A
, 456
, pp. 278
–285
.10.1016/j.msea.2006.11.16216.
Coquard
, R.
, and Baillis
, D.
, 2009
, “Numerical Investigation of Conductive Heat Transfer in High-Porosity Foams
,” Acta Mater.
, 57
, pp. 5466
–5479
.10.1016/j.actamat.2009.07.04417.
Scintilla
, L. D.
, and Tricarico
, L.
, 2012
, “Estimating Cutting Front Temperature Difference in Disk and CO2 Laser Beam Fusion Cutting
,” Opt. Laser Technol.
, 44
, pp. 1468
–1479
.10.1016/j.optlastec.2011.12.01618.
Guo
, S.
, Jun
, H.
, Lei
, L.
, and Yao
, Z.
, 2009
, “Numerical Analysis of Supersonic Gas-Dynamic Characteristic in Laser Cutting
,” Opt. Lasers Eng.
, 47
, pp. 103
–110
.10.1016/j.optlaseng.2008.07.02019.
Ottoa
, A.
, Koch
, H.
, Leitz
, K.
, and Schmidt
, M.
, 2011
, “Numerical Simulations—A Versatile Approach for Better Understanding Dynamics in Laser Material Processing
,” Phys. Procedia
, 12
, pp. 11
–20
.10.1016/j.phpro.2011.03.00320.
Ottoa
, A.
, and Schmidt
, M.
, 2010
, “Towards a Universal Numerical Simulation Model for Laser Material Processing
,” Phys. Procedia
, 5
, pp. 35
–46
.10.1016/j.phpro.2010.08.12021.
Gross
, M. S.
, Black
, I.
, and Müller
, W. H.
, 2004
, “Determination of the Lower Complexity Limit for Laser Cut Quality Modeling
,” Model. Simul. Mater. Sci. Eng.
, 12
, pp. 1237
–1249
.10.1088/0965-0393/12/6/01622.
Gross
, M. S.
, 2006
, “On Gas Dynamic Effects in the Modelling of Laser Cutting Processes
,” Appl. Math. Model.
, 30
, pp. 307
–318
.10.1016/j.apm.2005.03.02123.
Kovalev
, O. B.
, Yudin
, P. V.
, and Zaitsev
, A. V.
, 2009
, “Modeling of Flow Separation of Assist Gas as Applied to Laser Cutting of Thick Sheet Metal
,” Appl. Math. Model.
, 33
, pp. 3730
–3745
.10.1016/j.apm.2008.12.01124.
Ready
, J. F.
, 1976
, “Change of Reflectivity of Metallic Surfaces During Irradiation by C02-TEA Laser Pulses
,” IEEE J. Quantum Electron.
, QE-12
, pp. 137
–142
.10.1109/JQE.1976.106910625.
Shuja
, S. Z.
, and Yilbas
, B. S.
, 2000
, “The Influence of Gas Jet Velocity in Laser Heating-a Moving Workpiece Case
, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 214
, pp. 1059
–1078
.10.1243/095440600152352426.
ABAQUS Theory Manual
, version 6.9, 2009
, ABAQUS Inc., Pawtucket.27.
Deshpande
, V. S.
, and Fleck
, N. A.
, 2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,” Int. J. Impact Eng.
, 24
, pp. 277
–298
.10.1016/S0734-743X(99)00153-028.
Yilbas
, B. S.
, Davies
, R.
, Gorur
, A.
, Yilbas
, Z.
, Begh
, F.
, Kalkat
, M.
, and Akcakoyun.
N.
, 1990
, “Study Into the Measurement and Prediction of Penetration Time During CO2 Laser Cutting Process
,” Proc. Inst. Mech. Eng., Part B
, 204
, pp. 105
–113
.10.1243/PIME_PROC_1990_204_053_0229.
30.
McCullough
, K. Y. G.
, Fleck
, N. A.
, and Ashby
, M. F.
, 2000
, “The Stress-Life Behavior of Aluminum Alloy Foams
,” Fatigue Fract. Eng. Mater. Struct.
, 23
, pp. 199
–208
.10.1046/j.1460-2695.2000.00261.x31.
Yilbas
, B. S.
, 2008
, “Laser Cutting of Thick Sheet Metals: Effects of Cutting Parameters on Kerf Size Variations
.” J. Mater. Process. Technol.
, 201
(1–3
), pp. 285
–290
.10.1016/j.jmatprotec.2007.11.26532.
Deshpande
, V. S.
, and Fleck
, N. A.
, 2000
, “Isotropic Constitutive Models for Metallic Foams
,” J. Mech. Phys. Solids
, 48
, pp. 1253
–1283
.10.1016/S0022-5096(99)00082-433.
Fleck
, N. A.
, Olurin
, O. B.
, Chen
, C.
, and Ashby
, M. F.
, 2001
, “The Effect of Hole Size Upon the Strength of Metallic and Polymeric Foams
,” J. Mech. Phys. Solids
, 49
, pp. 2015
–2030
.10.1016/S0022-5096(01)00033-334.
Ashby
, M. F.
, Evans
, A. G.
, Fleck
, N. A.
, Gibson
, L. J.
, Hutchinson
, J. W.
, and Wadley
, H. N. G.
, 2000
, Metal Foams: A Design Guide
, Butterworth-Heinemann
, Washington, DC
.35.
Onck
, P. R.
, 2001
, “Application of a Continuum Constitutive Model to Metallic Foam DEN-Specimens in Compression
,” Int. J. Mech. Sci.
, 43
, pp. 2947
–2959
.10.1016/S0020-7403(01)00060-1Copyright © 2013 by ASME
You do not currently have access to this content.