Titanium alloys are employed in a wide range of applications, from aerospace to medicine. In particular, Ti-6Al-4 V is the most common, thanks to an excellent combination of low density, high specific strength, and corrosion resistance. Laser welding has been increasingly considered as an alternative to traditional techniques to join titanium alloys. An increase in penetration depth and a reduction of possible welding defects are indeed achieved; moreover, a smaller grain size in the fused zone (FZ) is benefited in comparison to either tungsten inert gas (TIG) or plasma arc welding, thus improving the tensile strength of the welded structures. This study was carried out on 3 mm thick Ti-6Al-4 V plates in square butt welding configuration. The novelty element of the investigation is the use of a disk-laser source, which allows a number of benefits thanks to better beam quality; furthermore, a proper device was developed for bead protection, as titanium is prone to oxidation when in fused state. A three-level factorial plan was arranged in face-centered cubic scheme. The regression models were found for a number of crucial responses and the corresponding surfaces were discussed; then a numerical optimization was carried out. The suggested condition was evaluated to compare the actual responses to the predicted values; X-ray inspections, Vickers micro hardness tests, and tensile tests were performed for the optimum.

References

1.
Donachie
,
M. J.
,
2000
,
Titanium, A Technical Guide
,
ASM International
,
Materials Park, OH
.
2.
Cao
,
X.
, and
Jahazi
,
M.
,
2009
, “
Effect of Welding Speed on Butt Joint Quality of Ti-6Al-4V Alloy Welded Using a High-Power Nd:YAG Laser
,”
Opt. Laser Eng.
,
47
(
11
), pp.
1231
1241
.
3.
Cardaropoli
,
F.
,
Alfieri
,
V.
,
Caiazzo
,
F.
, and
Sergi
,
V.
,
2012
, “
Manufacturing of Porous Biomaterials for Dental Implant Applications Through Selective Laser Melting
,”
Adv. Mater. Res.
,
535–537
, pp.
1222
1229
.
4.
Tsay
,
L. W.
, and
Tsay
,
C. Y.
,
1997
, “
The Effect of Microstructures on the Fatigue Crack Growth in Ti-6Al-4V Laser Welds
,”
Int. J. Fatigue
,
19
(
10
), pp.
713
720
.
5.
Sun
,
Z.
,
Pan
,
D.
, and
Zhang
,
W.
,
2002
, “
Correlation Between Welding Parameters and Microstructures in TIG, Plasma and Laser Welded Ti-6Al-4V
,”
6th International Conference on Trends in Welding Research
,
Pine Mountain
, pp.
760
767
.
6.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.10.1115/1.4024040
7.
Marimuthu
,
S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023240
8.
Wang
,
S.
, and
Wu
,
X.
,
2012
, “
Investigation on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Joints With Electron Beam Welding
,”
Mater. Des.
,
36
, pp.
663
670
.10.1016/j.matdes.2011.11.068
9.
Mazumder
,
J.
, and
Steen
,
W. M.
,
1980
, “
Welding of Ti-6Al-4V by Continuous Wave CO2 Laser
,”
Met. Constr.
,
12
(
9
), pp.
423
427
.
10.
Caiazzo
,
F.
,
Curcio
,
F.
,
Daurelio
,
G.
, and
Memola Capece Minutolo
,
F.
,
2004
, “
Ti6Al4V Sheets Lap and Butt Joints Carried out by CO2 Laser: Mechanical and Morphological Characterization
,”
J. Mater. Process. Technol.
,
149
, pp.
546
552
.10.1016/j.jmatprotec.2003.12.026
11.
Akman
,
E.
,
Demir
,
A.
,
Canel
,
T.
, and
Sinmazcelik
,
T.
,
2009
, “
Laser Welding of Ti6Al4V Titanium Alloys
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3705
3713
.10.1016/j.jmatprotec.2008.08.026
12.
Kabir
,
A. S. H.
,
Cao
,
X.
,
Medraj
,
M.
,
Wanjara
,
P.
,
Cuddy
,
J.
, and
Birur
,
A.
,
2010
, “
Effect of Welding Speed and Defocusing Distance on the Quality of Laser Welded Ti–6Al–4V
,”
Proceedings of the Materials Science and Technology (MS&T) 2010 Conference
,
Houston, TX
, pp.
2787
2797
.
13.
Liu
,
H.
,
Nakata
,
K.
,
Yamamoto
,
N.
, and
Liao
,
J.
,
2012
, “
Microstructural Characteristics and Mechanical Properties in Laser Beam Welds of Ti6Al4V Alloy
,”
J. Mater. Sci.
,
47
(
3
), pp.
1460
1470
.10.1007/s10853-011-5931-8
14.
Mastrocinque
,
E.
,
Corrado
,
G.
,
Caiazzo
,
F.
,
Pasquino
,
N.
,
Sergi
,
V.
, and
Acerra
,
F.
,
2011
, “
Disk Laser Welding of Ti6Al4V Alloy
,”
21st International Conference on Production Research
,
Stuttgart
.
15.
Caiazzo
,
F.
,
Mastrocinque
,
E.
,
Corrado
,
G.
, and
Sergi
,
V.
,
2012
, “
Regression Modeling to Predict the Geometrical Features of Ti6Al4V Thin Sheets Butt Joints Welded by Disk Laser
,”
Proceedings of SPIE Photonics Europe 2012
,
Bruxelles
, Vol. 8433, Paper No. 84330Y1-11.
16.
Giesen
,
A.
, and
Speiser
,
J.
,
2007
, “
Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws
,”
J. Sel. Top. Quantum Electron.
,
13
(
3
), pp.
598
609
.10.1109/JSTQE.2007.897180
17.
Steen
,
W. M.
,
2003
,
Laser Material Processing
,
Springer
,
London
, pp.
157
199
.
18.
Duley
,
W. W.
,
1998
,
Laser Welding
,
John Wiley and Sons, Inc.
,
New York
.
19.
Mastrocinque
,
E.
,
Corrado
,
G.
,
Caiazzo
,
F.
,
Pasquino
,
N.
, and
Sergi
,
V.
,
2012
, “
Effect of Defocusing on Bead-on-Plate of Ti6Al4V by Yb:YAG Disk Laser
,”
Adv. Mater. Res.
,
383–390
, pp.
6258
6264
.10.4028/www.scientific.net/AMR.383-390.6258
20.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiment
,
McGraw-Hill
,
New York
.
21.
Anderson
,
M. J.
, and
Whitcomb
,
P. J.
,
2000
,
DOE Simplified: Practical Tools for Effective Experimentation
,
Productivity Press
,
Portland, OR
.
22.
AWS
,
2001
,
Specification for Fusion Welding for Aerospace Applications
,
American Welding Society
,
Miami, FL.
23.
Alfieri
,
V.
,
Cardaropoli
,
F.
,
Caiazzo
,
F.
, and
Sergi
,
V.
,
2011
, “
Porosity Evolution in Aluminum Alloy 2024 BOP and Butt Defocused Welding by Yb:YAG Disk Laser
,”
Eng. Rev.
,
31
(
2
), pp.
125
132
.
24.
Caiazzo
,
F.
,
Sergi
,
V.
,
Corrado
,
G.
,
Alfieri
,
V.
, and
Cardaropoli
,
F.
,
2012
, “
Apparato Automatizzato di Saldatura Laser
,” Patent No. SA2012 A,000,016.
25.
Ahmed
,
T.
, and
Rack
,
H.
,
1998
, “
Phase Transformation During Cooling in α + β Titanium Alloys
,”
Mater. Sci. Eng.
,
A243
, pp.
206
211
.
26.
Caiazzo
,
F.
,
Alfieri
,
V.
,
Cardaropoli
,
F.
, and
Sergi
,
V.
,
2012
, “
Butt Autogenous Laser Welding of AA 2024 Aluminium Alloy Thin Sheets With a Yb:YAG Disk Laser
,”
Int. J. Adv. Manuf. Technol.
,
67
, pp.
2157
2169
.10.1007/s00170-012-4637-7
27.
Ruggiero
,
A.
,
Tricarico
,
L.
,
Olabi
,
A. G.
, and
Benyounis
,
K. Y.
,
2011
, “
Weld-Bead Profile and Costs Optimisation of the CO2 Dissimilar Laser Welding Process of Low Carbon Steel and Austenitic Steel AISI316
,”
Opt. Laser Technol.
,
43
, pp.
82
90
10.1016/j.optlastec.2010.05.008.
28.
ASTM
,
2004
, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, Standard No.
E8M-04
10.1520/E0008_E0008M.
29.
British Standard, 2011
, “Destructive Tests on Welds in Metallic Materials—Hardness Test: Part 2—Micro Hardness Testing on Welded Joints,” BSI, London, Standard No. EN ISO 9015-2.
30.
Gao
,
X.
,
Zhang
,
L.
,
Liu
,
J.
, and
Zhang
,
J.
,
2013
, “
A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate
,”
Mater. Sci. Eng. A
,
559
, pp.
14
21
.10.1016/j.msea.2012.06.016
You do not currently have access to this content.