The flow of electric current through a metal during deformation has been observed to reduce its flow stress and increase its ductility. This observation has motivated the development of advanced “electrically-assisted” metal forming processes that utilize electric current to assist in the forming of high-strength and difficult-to-form materials, such as titanium and magnesium alloys. This method of heating provides attractive benefits such as rapid heating times, increased energy efficiency due to its localized nature, as well as the ability to heat the workpiece in the forming machine thus eliminating the transfer process between oven heating and forming. In this paper, a generalized method is proposed to relate applied electric current density to thermally activated mechanical behavior to better understand and improve the processing of metals during electrically-assisted deformation. A comparison is made of engineering metals studied experimentally as well as in the literature, and it is shown that the method provides insight into what some researchers have observed as the occurrence or absence of a “current density threshold” in certain materials. A new material parameter, “current density sensitivity,” is introduced in order to provide a metric for the relative influence of current density on a material's thermally activated plastic flow stress. As a result, the electric current necessary to induce thermal softening in a material can be estimated in order to effectively parameterize a wide range of advanced electrically-assisted forming processes. Thermally induced changes in material microstructure are observed and discussed with respect to the underlying deformation mechanisms present during electrically-assisted deformation. Finally, a strong correlation between thermally activated mechanical behavior and elastic springback elimination during sheet bending is demonstrated.

References

1.
Brown
,
S. B.
,
Kim
,
K. H.
, and
Anand
,
L.
,
1989
, “
An Internal Variable Constitutive Model for Hot Working of Metals
,”
Int. J. Plast.
,
5
(
2
), pp.
95
130
.10.1016/0749-6419(89)90025-9
2.
Lin
,
Y. C.
, and
Chen
,
X.-M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
.10.1016/j.matdes.2010.11.048
3.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.10.1016/j.jmatprotec.2010.07.019
4.
Rudnev
,
V.
,
Brown
,
D.
,
Van Tyne
,
C.
, and
Clarke
,
K.
,
2008
, “
Intricacies for the Sucessful Induction Heating of Steels in Modern Forge Shops
,”
Proceedings of the 19th Forging Congress
, Chicago, IL.
5.
Du
,
C.
, and
Hsuing
,
C.-K.
,
2011
, “
Local Softening Technique Experiments on DP980 Steel
,” U.S. Department of Energy, Vehicle Technologies Program.
6.
Duflou
,
J. R.
,
Callebaut
,
B.
,
Verbert
,
J.
, and
De Baerdemaeker
,
H.
,
2007
, “
Laser Assisted Incremental Forming: Formability and Accuracy Improvement
,”
CIRP Ann.
,
56
(
1
), pp.
273
276
.10.1016/j.cirp.2007.05.063
7.
Geiger
,
M.
,
1994
, “
Synergy of Laser Material Processing and Metal Forming
,”
CIRP Ann.
,
43
(
2
), pp.
563
570
.10.1016/S0007-8506(07)60502-2
8.
Thomson
,
E.
,
1886
, “
Apparatus for Electric Welding
,” U.S. Patent No. 347140.
9.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Electroplastic Modeling of Bending Stainless Steel Sheet Metal Using Energy Methods
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041008
.10.1115/1.4004589
10.
Green
,
C. R.
,
McNeal
,
T. A.
, and
Roth
,
J. T.
,
2009
, “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference
, pp.
1
8
.
11.
Xu
,
Z.
,
Tang
,
G.
,
Tian
,
S.
,
Ding
,
F.
, and
Tian
,
H.
,
2007
, “
Research of Electroplastic Rolling of AZ31 Mg Alloy Strip
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
128
133
.10.1016/j.jmatprotec.2006.07.019
12.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng., A
,
287
(
2
), pp.
276
287
.10.1016/S0921-5093(00)00786-3
13.
Andrawes
,
J.
,
Kronenberger
,
T.
,
Perkins
,
T.
,
Roth
,
J.
, and
Warley
,
R.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Processes
,
22
(
1
), pp.
91
101
.10.1080/10426910601016004
14.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
.10.1115/1.2386164
15.
Siopis
,
M. S.
, and
Kinsey
,
B. L.
,
2010
, “
Experimental Investigation of Grain and Specimen Size Effects During Electrical-Assisted Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021004
.10.1115/1.4001039
16.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041003
.10.1115/1.4024394
17.
Kinsey
,
B. L.
,
Cullen
,
G.
,
Jordan
,
A.
, and
Mates
,
S.
,
2013
, “
Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti-6Al-4V
,”
CIRP Ann - Manuf. Technol.
,
62
(
1
), pp.
279–282
.10.1016/j.cirp.2013.03.058
18.
Ng
,
M.
,
Fan
,
R.
,
Zhou
,
R.
,
Smith
,
E.
,
Gao
,
R.
, and
Cao
,
J.
,
2012
, “
Micro Surface-Texturing by Electrically-Assisted Micro-Rolling (EAuR)
,”
Proceedings of the 7th International Conference on MicroManufacturing
, pp.
259
266
.
19.
Dzialo
,
C. M.
,
Siopis
,
M. S.
,
Kinsey
,
B. L.
, and
Weinmann
,
K. J.
,
2010
, “
Effect of Current Density and Zinc Content During Electrical-Assisted Forming of Copper Alloys
,”
CIRP Ann.
,
59
(
1
), pp.
299
302
.10.1016/j.cirp.2010.03.014
20.
Fan
,
R.
,
Magargee
,
J.
,
Hu
,
P.
, and
Cao
,
J.
,
2013
, “
Influence of Grain Size and Grain Boundaries on the Thermal and Mechanical Behavior of 70/30 Brass Under Electrically-Assisted Deformation
,”
Mater. Sci. Eng., A
,
574
, pp.
218–225
.10.1016/j.msea.2013.02.066
21.
Jones
,
J. J.
, and
Mears
,
L.
,
2011
, “
Constant Current Density Compression Behavior of 304 Stainless Steel and Ti-6Al-4V During Electrically-Assisted Forming
,”
ASME Conference Proceedings
,
2011
(
44304
), pp.
629
637
.
22.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
,
2007
, “
Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
342
347
.10.1115/1.2712470
23.
Salandro
,
W. A.
,
Bunget
,
C. J.
, and
Mears
,
L.
,
2012
, “
A Thermal-Based Approach for Determining Electroplastic Characteristics
,”
Proc. Inst. Mech. Eng., Part B
, pp.
1
14
.
24.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1978
, “
A Study of the Electroplastic Effect in Metals
,”
Scr. Metall.
,
12
(
11
), pp.
1063
1068
.10.1016/0036-9748(78)90026-1
25.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of dc on the Formability of Ti–6Al–4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
.10.1115/1.3078307
26.
McNeal
,
T. A.
,
Beers
,
J. A.
, and
Roth
,
J. T.
,
2009
, “
The Microstructural Effects on Magnesium Alloy AZ31B-O While Undergoing an Electrically-Assisted Manufacturing Process
,”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference
, pp.
1
10
.
27.
Jones
,
J. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2012
, “
Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
034504
.10.1115/1.4006547
28.
Bauccio
,
M.
,
1993
,
ASM Metals Reference Book
,
ASM International
,
Materials Park, OH
.
29.
Vinh
,
T.
,
Afzali
,
M.
, and
Roche
,
A.
,
1979
, “
Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate
,”
Proceedings of ICM3
,
2
, pp.
633
642
.
30.
Sheikh-Ahmad
,
J. Y.
, and
Bailey
,
J. A.
,
1995
, “
A Constitutive Model for Commercially Pure Titanium
,”
ASME J. Eng. Mater. Technol.
,
117
(
2
), pp.
139
144
.10.1115/1.2804520
31.
Kaufman
,
J.
,
1999
,
Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures
,
ASM International
,
Materials Park, OH
.
32.
Price
,
W.
,
1932
, “
Properties of Coppper and Some of its Important Industrial Alloys at Elevated Temperatures
,” Symposium on Effect of Temperature on the Properties of Metals, ASTM International, pp.
340
367
.
33.
1995
, Aerospace Structural Metals Handbook, CINDAS/USAF CRDA Handbooks Operation, Purdue University, West Lafayette, IN.
34.
Nemat-Nasser
,
S.
,
Guo
,
W. G.
, and
Cheng
,
J. Y.
,
1999
, “
Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium
,”
Acta Mater.
,
47
(
13
), pp.
3705
3720
.10.1016/S1359-6454(99)00203-7
35.
Military Handbook, 1998, “Metallic Materials and Elements for Aerospace Vehicle Structures,” Military Handbook No. MIL-HDBK-5H, Section 5.1.
36.
Housh
,
G.
,
Mikucki
,
B.
, and
Stevenson
,
A.
,
1990
,
Properties of Magnesium Alloys
,
ASM Handbook, ASM International
,
Materials Park, OH
.
37.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Cambridge, UK
.
38.
Jordan
,
A.
, and
Kinsey
,
B. L.
,
2012
, “
Measurement of Strain Gradients and Forces During Electrically-Assisted Microbending
,”
Proceedings of the 7th International Conference on MicroManufacturing
, pp.
254
258
.
You do not currently have access to this content.