The continued advancement of implantable medical devices has resulted in the need to join a variety of dissimilar, biocompatible metal pairs to enable selective use of their unique properties. Typical materials used in implantable medical devices include stainless steel (SS), titanium, platinum (Pt), as well as shape memory materials such as NiTi. Joining these dissimilar metal pairs, however, often results in excessive formation of brittle intermetallics, which significantly reduce the strength of the joints. The use of filler materials to combat the formation of intermetallics, however, results in reduced biocompatibility. Autogenous laser brazing is a novel process that is able to form thin, localized joints between dissimilar metal pairs without filler materials. In this study, the formation of autogenous laser brazed joints between NiTi and SS wires is investigated through experiments and numerical simulations. The strength, composition, microstructure, and phase formation of the resultant joints are investigated as a function of processing parameters and thermal, fluid flow, and phase prediction simulations are used to aid in understanding the joint formation mechanism.

References

1.
Hilfiker
,
P. R.
,
Quick
,
H. H.
,
Schmidt
,
M.
, and
Debatin
,
J. F.
,
1999
, “
In Vitro Image Characteristics of an Abdominal Aortic Stent Graft: CTA Versus 3D MRA
,”
Magma
,
8
(
1
), pp.
27
32
.10.1007/BF02590632
2.
Li
,
M. G.
,
Sun
,
D. Q.
,
Qiu
,
X. M.
, and
Yin
,
S. Q.
,
2006
, “
Corrosion Behavior of the Laser-Brazed Joint of TiNi Shape Memory Alloy and Stainless Steel in Artificial Saliva
,”
Mater. Sci. Eng.: A
,
441
(
1–2
), pp.
271
277
.10.1016/j.msea.2006.08.052
3.
Ghosh
,
M.
, and
Chatterjee
,
S.
,
2002
, “
Characterization of Transition Joints of Commercially Pure Titanium to 304 Stainless Steel
,”
Mater. Charact.
,
48
(
5
), pp.
393
399
.10.1016/S1044-5803(02)00306-6
4.
Kundu
,
S.
,
Ghosh
,
M.
,
Laik
,
A.
,
Bhanumurthy
,
K.
,
Kale
,
G.
, and
Chatterjee
,
S.
,
2005
, “
Diffusion Bonding of Commercially Pure Titanium to 304 Stainless Steel Using Copper Interlayer
,”
Mater. Sci. Eng.: A
,
407
(
1–2
), pp.
154
160
.10.1016/j.msea.2005.07.010
5.
Kundu
,
S.
, and
Chatterjee
,
S.
,
2008
, “
Characterization of Diffusion Bonded Joint Between Titanium and 304 Stainless Steel Using a Ni Interlayer
,”
Mater. Charact.
,
59
(
5
), pp.
631
637
.10.1016/j.matchar.2007.05.015
6.
Bauer
,
I.
,
Russek
,
U. A.
,
Herfurth
,
H. J.
,
Witte
,
R.
,
Heinemann
,
S.
,
Newaz
,
G.
,
Mian
,
A.
,
Georgiev
,
D.
, and
Auner
,
G. W.
,
2004
, “
Laser Microjoining of Dissimilar and Biocompatible Materials
,”
Proc. SPIE
,
5339
, pp.
454
464
.10.1117/12.530239
7.
Borrisutthekul
,
R.
,
Yachi
,
T.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2007
, “
Suppression of Intermetallic Reaction Layer Formation by Controlling Heat Flow in Dissimilar Joining of Steel and Aluminum Alloy
,”
Mater. Sci. Eng.: A
,
467
(
1–2
), pp.
108
113
.10.1016/j.msea.2007.03.049
8.
Louzguine
,
D. V.
,
Kato
,
H.
,
Louzguina
,
L. V.
, and
Inoue
,
A.
,
2004
, “
High-Strength Binary Ti-Fe Bulk Alloys With Enhanced Ductility
,”
J. Mater. Res.
,
19
(
12
), pp.
3600
3606
.10.1557/JMR.2004.0462
9.
Ray
,
R.
,
1972
, “
The Constitution of Metastable Titanium-Rich Ti-Fe Alloys: An Order-Disorder Transition
,”
Metall. Trans.
,
126
(
3
), pp.
362
629
.10.1007/BF02642743
10.
Elmer
,
J. W.
,
Palmer
,
T. A.
,
Babu
,
S. S.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2004
, “
Phase Transformation Dynamics During Welding of Ti–6Al–4V
,”
J. Appl. Phys.
,
95
(
12
), pp.
8327
8339
.10.1063/1.1737476
11.
Elmer
,
J. W.
, and
Palmer
,
T. A.
,
2006
, “
In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel
,”
Metall. Mater. Trans. A
,
37A
(
7
), pp.
2171
2182
.10.1007/BF02586137
12.
Borrisutthekul
,
R.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2005
, “
Dissimilar Material Laser Welding Between Magnesium Alloy AZ31B and Aluminum Alloy A5052-O
,”
Sci. Technol. Adv. Mater.
,
6
(
2
), pp.
199
204
.10.1016/j.stam.2004.11.014
13.
Lee
,
M. K.
,
Lee
,
J. G.
,
Choi
,
Y. H.
,
Kim
,
D. W.
,
Rhee
,
C. K.
,
Lee
,
Y. B.
, and
Hong
,
S. J.
,
2010
, “
Interlayer Engineering for Dissimilar Bonding of Titanium to Stainless Steel
,”
Mater. Lett.
,
64
(
9
), pp.
1105
1108
.10.1016/j.matlet.2010.02.024
14.
Mys
,
I.
, and
Schmidt
,
M.
,
2006
, “
Laser Micro Welding of Copper and Aluminum
,”
Proc. SPIE
6107
, p.
610703
.10.1117/12.648376
15.
Yao
,
C.
,
Xu
,
B.
,
Zhang
,
X.
,
Huang
,
J.
,
Fu
,
J.
, and
Wu
,
Y.
,
2009
, “
Interface Microstructure and Mechanical Properties of Laser Welding Copper–Steel Dissimilar Joint
,”
Opt. Lasers Eng.
,
47
(
7–8
), pp.
807
814
.10.1016/j.optlaseng.2009.02.004
16.
Sauerland
,
S.
,
Lohöfer
,
G.
, and
Egry
,
I.
,
1993
, “
Surface Tension Measurements on Levitated Liquid Metal Drops
,”
J. Non-Cryst. Solids
,
156–158
(Part 2), pp.
833
836
.10.1016/0022-3093(93)90080-H
17.
Satoh
,
G.
,
Yao
,
Y. L.
, and
Qiu
,
C.
,
2012
, “
Strength and Microstructure of Laser Fusion-Welded Ti–SS Dissimilar Material Pair
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
469
479
.10.1007/s00170-012-4342-6
18.
Raghavan
,
V.
,
2010
, “
Fe-Ni-Ti (Iron-Nickel-Titanium)
,”
J. Phase Equilib. Diffus.
,
31
(
2
), pp.
186
189
.10.1007/s11669-010-9656-1
You do not currently have access to this content.