A206–Al2O3 metal matrix nanocomposite (MMNC) is a promising high performance material with potential applications in various industries, such as automotive, aerospace, and defense. Al2O3 nanoparticles dispersed into molten Al using ultrasonic cavitation technique can enhance the nucleation of primary Al phase to reduce its grain size and modify the secondary intermetallic phases. To enable a scale-up production, an effective yet easy-to-implement quality inspection technique is needed to effectively evaluate the resultant microstructure of the MMNCs. At present the standard inspection technique is based on the microscopic images, which are costly and time-consuming to obtain. This paper investigates the relationship between the ultrasonic attenuation and the microstructures of pure A206 and Al2O3 reinforced MMNCs with/without ultrasonic dispersion. A hypothesis test based on an estimated attenuation variance was developed and it could accurately differentiate poor samples from good ones. This study provides useful guidelines to establish a new quality inspection technique for A206–Al2O3 nanocomposites using ultrasonic nondestructive testing method.

References

1.
Choi
,
H.
,
Cho
,
W.-h.
,
Konishi
,
H.
,
Kou
,
S.
, and
Li
,
X.
,
2013
, “
Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy
,”
Metall. Mater. Trans. A
,
44
(
4
), pp.
1897
1907
.10.1007/s11661-012-1531-8
2.
Esfahani
,
M.
, and
Niroumand
,
B.
,
2010
, “
Study of Hot Tearing of A206 Aluminum Alloy Using Instrumented Constrained T-shaped Casting method
,”
Mater. Charact.
,
61
(
3
), pp.
318
324
.10.1016/j.matchar.2009.12.015
3.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nano-composite Fabricated by Ultrasonic Dispersion of Nano-sized SiC Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng. A
,
380
(
1
), pp.
378
383
.10.1016/j.msea.2004.03.073
4.
Li
,
X.
,
Yang
,
Y.
, and
Weiss
,
D.
,
2008
, “
Theoretical and Experimental Study on Ultrasonic Dispersion of Nanoparticles for Strengthening Cast Aluminum Alloy A356
,”
Metall. Sci. Technol.
,
26
(
2
), pp.
12
20
.
5.
Yang
,
Y.
, and
Li
,
X.
,
2007
, “
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
252
255
.10.1115/1.2194064
6.
Cao
,
G.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031105
.10.1115/1.2823086
7.
Gao
,
Y.
,
Wu
,
B.
,
Liu
,
Z.
,
Zhou
,
Y.
,
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
014502
.10.1115/1.4025756
8.
Sun
,
Y.
,
2012
, “
Microstructure Modification by Nanoparticles in Aluminum and Magnesium Matrix Nanocomposites
,” M.S. thesis, University of Wisconsin-Madison, Madison, WI.
9.
Wu
,
J.
,
Zhou
,
S.
, and
Li
,
X.
,
2013
, “
Acoustic Emission Monitoring for Ultrasonic Cavitation Based Dispersion Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031015
.10.1115/1.4024041
10.
Wu
,
J.
,
Zhou
,
S.
,
Chen
,
Y.
, and
Li
,
X.
, “
On-line Steady-state Detection for Process Control Using Multiple Change-point Models and Particle Filters
,”
IEEE Trans. Autom. Sci. Eng.
(submitted).
11.
Liu
,
H.
,
Zhou
,
S.
, and
Li
,
X.
,
2013
, “
Inferring the Size Distribution of 3D Particle Clusters in Metal Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011013
.10.1115/1.4023268
12.
Schmerr
,
L. W.
,
1998
,
Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach
,
Plenum Press
,
New York
.
13.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1990
,
Ultrasonic Testing of Materials
,
Springer
,
Berlin, Germany
.
14.
Szilard
,
J.
,
1982
,
Ultrasonic Testing: Non-conventional Testing Techniques
,
Wiley
,
New York
.
15.
Portune
,
A. R.
,
2011
, “
Nondestructive Ultlrasonic Characterization of Armor Grade Silicon Carbide
,” Ph.D. thesis, The State University of New Jersey, Piscataway, NJ.
16.
Bottiglieri
,
S.
,
2012
, “
The Effect of Microstructure in Aluminum Oxide Ceramics on Acoustic Loss Mechanisms
,” Ph.D. thesis, The State University of New Jersey, Piscataway, NJ.
17.
Fukuoka
,
H.
,
Toda
,
H.
,
Hirakawa
,
K.
,
Sakamoto
,
H.
, and
Toya
,
Y.
,
1985
, “
Nondestructive Assessments of Residual Stresses in Railroad Wheel Rim by Acoustoelasticity
,”
ASME J. Manuf. Sci. Eng.
,
107
(
3
), pp.
281
287
.10.1115/1.3185999
18.
Bhatia
,
A. B.
,
1985
,
Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids
,
Dover
,
New York
.
19.
Treiber
,
M.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2010
, “
Effects of Sand Aggregate on Ultrasonic Attenuation in Cement-Based Materials
,”
Mater. Struct.
,
43
(
1
), pp.
1
11
.10.1617/s11527-010-9587-7
20.
Hartmann
,
B.
, and
Jarzynski
,
J.
,
1972
, “
Ultrasonic Hysteresis Absorption in Polymers
,”
J. Appl. Phys.
,
43
(
11
), pp.
4304
4312
.10.1063/1.1660920
21.
Mason
,
W. P.
, and
McSkimin
,
H.
,
1947
, “
Attenuation and Scattering of High Frequency Sound Waves in Metals and Glasses
,”
J. Acoust. Soc. Am.
,
19
(
3
), pp.
464
473
.10.1121/1.1916504
22.
Jacobs
,
L. J.
, and
Owino
,
J. O.
,
2000
, “
Effect of Aggregate Size on Attenuation of Rayleigh Surface Waves in Cement-Based Materials
,”
J. Eng. Mech.
,
126
(
11
), pp.
1124
1130
.10.1061/(ASCE)0733-9399(2000)126:11(1124)
23.
Biwa
,
S.
,
2001
, “
Independent Scattering and Wave Attenuation in Viscoelastic Composites
,”
Mech. Mater.
,
33
(
11
), pp.
635
647
.10.1016/S0167-6636(01)00080-1
24.
Epstein
,
P. S.
, and
Carhart
,
R. R.
,
1953
, “
The Absorption of Sound in Suspensions and Emulsions. I. Water Fog in Air
,”
J. Acoust. Soc. Am.
,
25
(
3
), pp.
553
565
.10.1121/1.1907107
25.
Challis
,
R.
,
Tebbutt
,
J.
, and
Holmes
,
A.
,
1998
, “
Equivalence Between Three Scattering Formulations for Ultrasonic Wave Propagation in Particulate Mixtures
,”
J. Phys. D
,
31
(
24
), pp.
3481
3497
.10.1088/0022-3727/31/24/012
26.
McClements
,
D.
,
1996
, “
Principles of Ultrasonic Droplet Size Determination in Emulsions
,”
Langmuir
,
12
(
14
), pp.
3454
3461
.10.1021/la960083q
27.
Sears
,
F. M.
, and
Bonner
,
B. P.
,
1981
, “
Ultrasonic Attenuation Measurement by Spectral Ratios Utilizing Signal Processing Techniques
,”
IEEE Trans. Geosci. Remote Sens.
,
GE-19
(
2
), pp.
95
99
.10.1109/TGRS.1981.350359
28.
Ganguli
,
A.
,
Gao
,
R. X.
,
Liang
,
K.
,
Jundt
,
J.
, and
Ordonez
,
A.
,
2010
, “
Experimental Investigation of Ultrasound Wave Focusing in Attenuative Solids
,”
IEEE Trans. Instrum. Meas.
,
59
(
9
), pp.
2261
2271
.10.1109/TIM.2009.2034585
29.
Xu
,
W.
, and
Kaufman
,
J. J.
,
1993
, “
Diffraction Correction Methods for Insertion Ultrasound Attenuation Estimation
,”
IEEE Trans. Biomed. Eng.
,
40
(
6
), pp.
563
570
.10.1109/10.237676
30.
Zheng
,
R.
,
Le
,
L. H.
,
Sacchi
,
M. D.
,
Ta
,
D.
, and
Lou
,
E.
,
2007
, “
Spectral Ratio Method to Estimate Broadband Ultrasound Attenuation of Cortical Bones In Vitro Using Multiple Reflections
,”
Phys. Med. Biol.
,
52
(
19
), pp.
5855
5869
.10.1088/0031-9155/52/19/008
31.
Punurai
,
W.
,
Jarzynski
,
J.
,
Qu
,
J.
,
Kurtis
,
K. E.
, and
Jacobs
,
L. J.
,
2006
, “
Characterization of Entrained Air Voids in Cement Paste With Scattered Ultrasound
,”
NDT & E Int.
,
39
(
6
), pp.
514
524
.10.1016/j.ndteint.2006.02.001
32.
Rogers
,
P. H.
, and
Van Buren
,
A.
,
1974
, “
An Exact Expression for the Lommel-Diffraction Correction Integral
,”
J. Acoust. Soc. Am.
,
55
(
4
), pp.
724
728
.10.1121/1.1914589
33.
Nave
,
M.
,
Dahle
,
A.
, and
St. John
,
D.
,
2000
, “
The Role of Zinc in the Eutectic Solidification of Magnesium–Aluminium–Zinc Alloys
,”
Proceedings of Magnesium Technology 2000, The Minerals, Metals & Materials Society
, Nashville, TN, Mar. 12–16, pp.
243
250
.
34.
Bhattacharjee
,
A.
,
Pilchak
,
A.
,
Lobkis
,
O.
,
Foltz
,
J.
,
Rokhlin
,
S.
, and
Williams
,
J.
,
2011
, “
Correlating Ultrasonic Attenuation and Microtexture in a Near-Alpha Titanium Alloy
,”
Metall. Mater. Trans. A
,
42
(
8
), pp.
2358
2372
.10.1007/s11661-011-0619-x
35.
Han
,
Y.
, and
Thompson
,
R.
,
1997
, “
Ultrasonic Backscattering in Duplex Microstructures: Theory and Application to Titanium Alloys
,”
Metall. Mater. Trans. A
,
28
(
1
), pp.
91
104
.10.1007/s11661-997-0085-7
36.
Mukhopadhyay
,
A.
,
Sarkar
,
R.
,
Punnose
,
S.
,
Valluri
,
J.
,
Nandy
,
T. K.
, and
Balasubramaniam
,
K.
,
2012
, “
Scatter in Nonlinear Ultrasonic Measurements Due to Crystallographic Orientation Change Induced Anisotropy in Harmonics Generation
,”
J. Appl. Phys.
,
111
(
5
), p.
054905
.10.1063/1.3686698
37.
Gigliotti
,
M.
,
Bewlay
,
B.
,
Deaton
,
J.
,
Gilmore
,
R.
, and
Salishchev
,
G.
,
2000
, “
Microstructure-Ultrasonic Inspectability Relationships in Ti6242: Signal-to-Noise in Fine-Grain-Processed Ti6242
,”
Metall. Mater. Trans. A
,
31
(
9
), pp.
2119
2125
.10.1007/s11661-000-0129-8
38.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kwon
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti–6Al–4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.10.1115/1.4027674
39.
Yilbas
,
B.
,
Akhtar
,
S.
,
Matthews
,
A.
,
Karatas
,
C.
, and
Leyland
,
A.
,
2011
, “
Microstructure and Thermal Stress Distributions in Laser Carbonitriding Treatment of Ti–6Al–4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021013
.10.1115/1.4003523
40.
Xi
,
Y.
,
Bermingham
,
M.
,
Wang
,
G.
, and
Dargusch
,
M.
,
2013
, “
Finite Element Modeling of Cutting Force and Chip Formation During Thermally Assisted Machining of Ti6Al4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061014
.10.1115/1.4025740
41.
Papadakis
,
E. P.
,
1965
, “
Ultrasonic Attenuation Caused by Scattering in Polycrystalline Metals
,”
J. Acoust. Soc. Am.
,
37
(
4
), pp.
711
717
.10.1121/1.1909401
You do not currently have access to this content.