During the machining of carbon nanotube (CNT)-polymer composites, the interface plays a critical role in the load transfer between polymer and CNT. Therefore, the interface for these composites has to be explicitly considered in the microstructure-level finite element (FE) machining model, so as to better understand their machinability and the interfacial failure mechanisms. In this study, a microstructure-level FE machining model for CNT-polymer composites has been developed by considering the interface as the third phase, in addition to the polymer and the CNT phases. For the interface, two interfacial properties, viz., interfacial strength and fracture energy have been included. To account for variable temperature and strain rate over the deformation zone during machining, temperature and strain rate-dependent mechanical properties for the interface and the polymer material have also been included in the model. It is found that the FE machining model predicts cutting force within 6% of the experimental values at different machining conditions and CNT loadings. The cutting force data reveals that the model can accurately capture the CNT pull-out/protrusion, and the subsequent surface damage. Simulated surface damage characteristics are supported by the surface topographies and roughness values obtained from the machining experiments. The study suggests that the model can be utilized to design the new generation of CNT-polymer composites with specific interfacial properties that minimize the surface/subsurface damage and improve the surface finish.

References

1.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
(7), pp.
1297
1300
.10.1103/PhysRevLett.79.1297
2.
Ghasemi-Nejhad
,
M. N.
, and
Askari
,
D.
,
2005
, “
Mechanical Properties Modeling of Carbon Single-Walled Nanotubes: A Finite Element Method
,”
J. Comput. Theor. Nanosci.
,
2
(2), pp.
298
318
.10.1166/jctn.2005.115
3.
Stewart
,
R.
,
2004
, “
Nanocomposites: Microscopic Reinforcement Boost Polymer Performance
,”
Plast. Eng.
,
60
, pp.
22
30
.
4.
Zhao
,
B.
,
Wang
,
J.
,
Li
,
Z.
,
Liu
,
P.
,
Chen
,
D.
, and
Zhang
,
Y.
,
2008
, “
Mechanical Strength Improvement of Polypropylene Threads Modified by PVA/CNT Composite Coatings
,”
Mater. Lett.
,
62
(28), pp.
4380
4382
.10.1016/j.matlet.2008.07.037
5.
Endo
,
M.
,
Hayashi
,
T.
,
Kim
,
Y. A. K.
, and
Muramatsu
,
H.
,
2006
, “
Development and Application of Carbon Nanotubes
,”
Jpn. J. Appl. Phys.
,
45
, pp.
4883
4892
.10.1143/JJAP.45.4883
6.
Eklund
,
P.
,
Ajayan
,
P.
,
Blackmon
,
R.
,
Hart
,
A. J.
,
Kong
,
J.
,
Pradhan
,
B.
,
Rao
,
A.
, and
Rinzler
,
A.
,
2007
, “
International Assessment of Research and Development on Carbon Nanotubes Manufacturing and Application
,” World Technology Evaluation Center (WTEC) Panel Report.
7.
Yakobson
,
B. I.
, and
Avouris
,
P.
,
2001
, “
Mechanical Properties of Carbon Nanotubes
,”
Carbon Nanotubes
,
M. S.
Dresselhaus
and
P.
Avouris
, eds.,
Springer
,
Berlin, Germany
, pp.
287
327
.
8.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube-Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031110
.10.1115/1.2917564
9.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube–Reinforced Polymer Composites—Part I: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031114
.10.1115/1.2917378
10.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube-Reinforced Polymer Composites—Part II: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031115
.10.1115/1.2927431
11.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite–Deformation Irreversible Cohesive Elements for Three–Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(9), pp.
1267
1282
.10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
12.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
De Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
, pp.
1415
1438
.10.1177/0021998303034505
13.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
14.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube-Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.10.1115/1.4024941
15.
Liu
,
K.
,
VanLandingham
,
M. R.
, and
Ovaert
,
T. C.
,
2009
, “
Mechanical Characterization of Soft Viscoelastic Gels Via Indentation and Optimization-Based Inverse Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
2
(4), pp.
355
363
.10.1016/j.jmbbm.2008.12.001
16.
Hou
,
Y.
,
Tang
,
J.
,
Zhang
,
H.
,
Qian
,
C.
,
Feng
,
Y.
, and
Liu
,
J.
,
2009
, “
Functionalized Few Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites
,”
ACS Nano
,
3
(5), pp.
1057
1062
.10.1021/nn9000512
17.
Paiva
,
M. C.
,
Zhou
,
B.
,
Fernando
,
K. A. S.
,
Lin
,
Y.
,
Kennedy
,
J. M.
, and
Sun
,
Y. P.
,
2004
, “
Mechanical and Morphological Characterization of Polymer-Carbon Nanocomposites From Functionalized Carbon Nanotubes
,”
Carbon
,
42
(14), pp.
2849
2854
.10.1016/j.carbon.2004.06.031
18.
Fleck
,
N. A.
,
Stronge
,
W. J.
, and
Liu
,
J. H.
,
1990
, “
High Strain-Rate Shear Response of Polycarbonate and Polymethyl Methacrylate
,”
Proc. R. Soc. London, Ser. A
,
429
(1877), pp.
459
479
.10.1098/rspa.1990.0069
19.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2012
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(2), pp.
141
149
.10.1016/j.jmapro.2011.09.005
20.
Detassis
,
M.
,
Pegoretti
,
A.
, and
Migliaresi
,
C.
,
1995
, “
Effect of Temperature and Strain Rate on Interfacial Shear Stress Transfer in Carbon/Epoxy Model Composites
,”
Compos. Sci. Technol.
,
53
(1), pp.
39
46
.10.1016/0266-3538(94)00069-7
21.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
22.
Zhang
,
P.
,
Li
,
S. X.
, and
Zhang
,
Z. F.
,
2011
, “
General Relationship Between Strength and Hardness
,”
Mater. Sci. Eng. A
,
529
(1), pp.
62
73
.10.1016/j.msea.2011.08.061
23.
Lu
,
L.
,
Schwaiger
,
R.
,
Shan
,
Z. W.
,
Dao
,
M.
,
Lu
,
K.
, and
Suresh
,
S.
,
2005
, “
Nano–Sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper
,”
Acta Mater.
,
53
(7), pp.
2169
2179
.10.1016/j.actamat.2005.01.031
24.
Lichinchi
,
M.
, and
Lenardi
,
C.
,
1998
, “
Simulation of Berkovich Nanoindentation Experiments on Thin Films Using Finite Element Method
,”
Thin Solid Films
,
312
(1–2), pp.
240
248
.10.1016/S0040-6090(97)00739-6
25.
Poisl
,
W. H.
,
Oliver
,
W. C.
, and
Fabes
,
B. D.
,
1995
, “
The Relationship Between Indentation and Uniaxial Creep in Amorphous Selenium
,”
J. Mater. Res.
,
10
(
8
), pp.
2024
2032
.10.1557/JMR.1995.2024
26.
Abdel-Ati
,
M. I.
,
Hemeda
,
O. M.
,
Mosaad
,
M. M.
, and
Hemeda
,
D. M.
,
1994
, “
Thermal Properties of Pure and Doped (Polyvinyl-Alcohol) PVA
,”
J. Therm. Anal. Calorim.
,
42
(6), pp.
1113
1122
.10.1007/BF02546921
27.
Bama
,
G. K.
,
Devi
,
P. I.
, and
Ramachandran
,
K.
, “
Structural and Thermal Properties of PVA and Its Composite With CuCl
,”
Proceedings of American Institution of Physics
, Vol. 1349, pp.
537
538
.
28.
Mi
,
Y.
,
Zhang
,
X.
,
Zhou
,
S.
,
Cheng
,
J.
,
Liu
,
F.
,
Zhu
,
H.
,
Cheng
,
J.
,
Liu
,
F.
,
Zhu
,
H.
,
Dong
,
X.
, and
Jiao
,
Z.
,
2007
, “
Morphological and Mechanical Properties of Bile Salt Modified Multi-Walled Carbon Nanotube/Poly (Vinyl Alcohol) Nanocomposites
,”
Composites, Part A
,
38
(9), pp.
2041
2046
.10.1016/j.compositesa.2007.04.014
29.
Chen
,
W.
,
Tao
,
X.
,
Xue
,
P.
, and
Cheng
,
X.
,
2005
, “
Enhanced Mechanical Properties and Morphological Characterizations of Poly (Vinyl Alcohol)-Carbon Nanotube Composite Films
,”
Appl. Surf. Sci.
,
252
, pp.
1404
1409
.10.1016/j.apsusc.2005.02.138
30.
Salvetat-Delmotte
,
J. P.
, and
Rubio
,
A.
,
2002
, “
Mechanical Properties of Carbon Nanotubes: A Fiber Digest for Beginners
,”
Carbon
,
40
(10), pp.
1729
1734
.10.1016/S0008-6223(02)00012-X
31.
Hone
,
J.
,
2004
, “
Carbon Nanotubes: Thermal Properties
,”
Dekker Encyclopedia of Nanoscience and Nanotechnology
,
M.
Dekker
, ed.,
Marcel Dekker, Inc.
,
New York
, pp.
603
610
.
32.
Hepplestone
,
S. P.
,
Ciavarella
,
A. M.
,
Janke
,
C.
, and
Srivastava
,
G. P.
,
2006
, “
Size and Temperature Dependence of the Specific Heat Capacity of Carbon Nanotubes
,”
Surf. Sci.
,
600
(18), pp.
3633
3636
.10.1016/j.susc.2005.12.070
33.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
,
54
(11), pp.
2436
2452
.10.1016/j.jmps.2006.04.009
34.
Cooper
,
C. A.
,
Cohen
,
S. R.
,
Barber
,
A. H.
, and
Wagner
,
H. D.
,
2002
, “
Detachment of Nanotube From Polymer Matrix
,”
Appl. Phys. Lett.
,
81
(20), pp.
3873
3875
.10.1063/1.1521585
35.
Golestanina
,
H.
, and
Shojaie
,
M.
,
2010
, “
Numerical Characterization of CNT-Based Polymer Composites Considering Interface Effects
,”
Comput. Mater. Sci.
,
50
(2), pp.
731
736
.10.1016/j.commatsci.2010.10.003
36.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
On the Tensile Behavior of an Embedded Carbon Nanotube in Polymer Matrix With Non-Bond Interphase Region
,”
Compos. Struct.
,
92
(3), pp.
647
652
.10.1016/j.compstruct.2009.09.033
37.
Li
,
Z.
, and
Lambros
,
J.
,
2001
, “
Strain Rate Effects on the Thermomechanical Behavior of Polymers
,”
Int. J. Solids Struct.
,
38
(20), pp.
3549
3562
.10.1016/S0020-7683(00)00223-7
38.
Jésior
,
J. C.
,
1989
, “
Use of Low-Angle Diamond Knives Leads to Improved Ultrastructural Preservation of Ultrathin Sections
,”
Scanning Microsc.
,
3
, pp.
147
152
.
39.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
J.
,
2006
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
465
473
.10.1115/1.2137753
40.
Tyan
,
T. M.
, and
Yang
,
W. H.
,
1992
, “
Analysis of Orthogonal Metal Cutting Processes
,”
Int. J. Num. Methods Eng.
,
34
(1), pp.
365
389
.10.1002/nme.1620340122
41.
Suratwala
,
T.
,
Wong
,
L.
,
Miller
,
P.
,
Feit
,
M. D.
,
Menapace
,
J.
,
Steele
,
R.
,
Davis
,
P.
, and
Walmer
,
D.
,
2006
, “
Sub-Surface Mechanical Damage Distributions During Grinding of Fused Silica
,”
J. Non-Cryst. Solids
,
352
(52–54), pp.
5601
5617
.10.1016/j.jnoncrysol.2006.09.012
You do not currently have access to this content.