Friction stir welding (FSW) of AA 5052 H32 to AA 6061 T6 blanks was obtained for each thicknesses of 1 mm and 1.5 mm. Successful welds were obtained at constant tool spindle speed of 1500 rpm and two tool traverse speeds of 63 mm/min and 98 mm/min. For both thicknesses, weld produced at 63 mm/min speed gives more ductility than the weld produced at 98 mm/min. Elongation prior failure of 1.5 mm thick tailor welded blank (TWB) was found to be 47% more than that of 1 mm thickness weld. Microhardness measurement of the dissimilar welds showed lower values at heat-affected zones (HAZ) on both the sides of weld line, whereas lowest hardness value was obtained at HAZ of AA 5052. Optical microscope and energy dispersive spectroscopy (EDS) analyses on the stir zone (SZ) suggest dynamic recrystallization and finer grain size with uniform mixing at the center of SZ. Intermetallic compounds are formed during welding which plays detrimental role in the fracture strength of the joint.

References

1.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
J. Mater. Sci. Eng. R
,
50
(1–2), pp.
1
78
.
2.
Dawes
,
C. J.
, and
Thomas
,
W. M.
,
1996
, “
Friction Stir Process Welds Aluminium Alloys
,”
Weld. J.
,
75
(
3
), pp.
41
45
.
3.
Koilraj
,
M.
,
Sundareswaran
,
V.
,
Vijayan
,
S.
, and
Koteswara Rao
,
S. R.
,
2012
, “
Friction Stir Welding of Dissimilar Aluminium Alloys AA2219 to AA5083: Optimization of Process Parameters Using Taguchi Technique
,”
Mater. Des.
,
42
, pp.
1
7
.
4.
Shigematsu
,
I.
,
Kwon
,
Y. J.
,
Suzuki
,
K.
,
Imai
,
T.
, and
Saito
,
N.
,
2003
, “
Joining of 5083 and 6061 Aluminum Alloys by Friction Stir Welding
,”
J. Mater. Sci. Lett.
,
22
(
5
), pp.
353
356
.
5.
Khodir
,
S. A.
, and
Shibayanagi
,
T.
,
2008
, “
Friction Stir Welding of Dissimilar AA2024 and AA7075 Aluminum Alloys
,”
Mater. Sci. Eng. B
,
148
(1–3), pp.
82
87
.
6.
Cavaliere
,
P.
,
Nobile
,
R.
,
Panella
,
F. W.
, and
Squillace
,
A.
,
2006
, “
Mechanical and Microstructural Behavior of 2024-7075 Aluminium Alloy Sheets Joined by Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
46
(
6
), pp.
588
594
.
7.
Cavaliere
,
P.
,
De Santis
,
A.
,
Panella
,
F.
, and
Squillace
,
A.
,
2009
, “
Effect of Welding Parameters on Mechanical and Microstructural Properties of Dissimilar AA6082–AA2024 Joints Produced by Friction Stir Welding
,”
Mater. Des.
,
30
(
3
), pp.
609
616
.
8.
Shanmuga Sundaram
,
N.
, and
Murugan
,
N.
,
2010
, “
Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminium Alloys
,”
Int. J. Mater. Des.
,
31
(
9
), pp.
4184
4193
.
9.
Hong
,
S. T.
,
Kwon
,
Y. J.
, and
Son
,
H. J.
,
2008
, “
The Mechanical Properties of Friction Stir Welding (FSW) Joints of Dissimilar Aluminum Alloys
,”
1st International Symposium on Hybrid Materials and Processing
, Busan, South Korea, p.
69
.
10.
Park
,
S. K.
,
Hong
,
S. T.
,
Park
,
J. H.
,
Park
,
K. Y.
,
Kwon
,
Y. J.
, and
Son
,
H. J.
,
2010
, “
Effect of Material Locations on Properties of Friction Stir Welding Joints of Dissimilar Aluminium Alloys
,”
Sci. Technol. Weld. Joining
,
15
(
4
), pp.
331
336
.
11.
RajKumar
,
V.
,
Venkatesh Kannan
,
M.
,
Sadeesh
,
P.
,
Arivazhagan
,
N.
, and
Ramkumar
,
K. D.
,
2014
, “
Studies on Effect of Tool Design and Welding Parameters on the Friction Stir Welding of Dissimilar Aluminium Alloys AA 5052 – AA 6061
,”
Procedia Eng.
,
75
, pp.
93
97
.
12.
Moshwan
,
R.
,
Yusof
,
F.
,
Hassan
,
M. A.
, and
Rahmat
,
S. M.
,
2015
, “
Effect of Tool Rotational Speed on Force Generation, Microstructure and Mechanical Properties of Friction Stir Welded Al–Mg–Cr–Mn (AA 5052-O) Alloy
,”
Mater. Des.
,
66
(
Part A
), pp.
118
128
.
13.
Kwon
,
Y.-J.
,
Shim
,
S.-B.
, and
Paek
,
D.-H.
,
2009
, “
Friction Stir Welding of 5052 Aluminum Alloy Plates
,”
Trans. Nonferrous Met. Soc. China
,
19
(
Supplement 1
), pp.
23
27
.
14.
Mustafa
,
F. F.
,
Kadhym
,
A. H.
, and
Yahya
,
H. H.
,
2015
, “
Tool Geometries Optimization for Friction Stir Welding of AA6061-T6 Aluminum Alloy T-Joint Using Taguchi Method to Improve the Mechanical Behavior
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031018
.
15.
Scialpi
,
A.
,
De Giorgi
,
M.
,
De Filippis
,
L. A. C.
,
Nobile
,
R.
, and
Panella
,
F. W.
,
2008
, “
Mechanical Analysis of Ultra-Thin Friction Stir Welding Joined Sheets With Dissimilar and Similar Materials
,”
Mater. Des.
,
29
(
5
), pp.
928
936
.
16.
Rodrigues
,
D. M.
,
Loureiro
,
A.
,
Leitao
,
C.
,
Leal
,
R. M.
,
Chaparro
,
B. M.
, and
Vilaça
,
P.
,
2009
, “
Influence of Friction Stir Welding Parameters on the Microstructural and Mechanical Properties of AA 6016-T4 Thin Welds
,”
Mater. Des.
,
30
(
6
), pp.
1913
1921
.
17.
Leal
,
R. M.
,
Leitão
,
C.
,
Loureiro
,
A.
,
Rodrigues
,
D. M.
, and
Vilac
,
P.
,
2008
, “
Material Flow in Heterogeneous Friction Stir Welding of Thin Aluminium Sheets: Effect of Shoulder Geometry
,”
Mater. Sci. Eng.
,
498
(1–2), pp.
384
391
.
18.
Patel
,
V. V.
,
Sejani
,
D. J.
,
Patel
,
N. J.
,
Vora
,
J. J.
,
Gadhvi
,
B. J.
,
Padodara
,
N. R.
, and
Vamja
,
C. D.
,
2016
, “
Effect of Tool Rotation Speed on Friction Stir Spot Welded AA5052-H32 and AA6082-T6 Dissimilar Aluminum Alloys
,”
Metallogr. Microstruct. Anal.
,
5
(
2
), pp.
142
148
.
19.
Arora
,
A.
,
De
,
A.
, and
Deb Roy
,
T.
,
2011
, “
Toward Optimum Friction Stir Welding Tool Shoulder Diameter
,”
Scr. Mater.
,
64
(
1
), pp.
9
12
.
20.
McNelley
,
T. R.
,
Swaminathan
,
S.
, and
Su
,
J. Q.
,
2008
, “
Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys
,”
Scr. Mater.
,
58
(
5
), pp.
349
354
.
You do not currently have access to this content.