Disassembly is a very important step in recycling and maintenance, particularly for energy saving. However, disassembly sequence planning (DSP) is a challenging combinatorial optimization problem due to complex constraints of many products. This paper considers partial and parallel disassembly sequence planning for solving the degrees-of-freedom in modular product design, considering disassembly time, cost, and energy consumption. An automatic self-decomposed disassembly precedence matrix (DPM) is designed to generate partial/parallel disassembly sequence for reducing complexity and improving efficiency. A Tabu search-based hyper heuristic algorithm with exponentially decreasing diversity management strategy is proposed. Compared with the low-level heuristics, the proposed algorithm is more efficient in terms of exploration ability and improving energy benefits (EBs). The comparison results of three different disassembly strategies prove that the partial/parallel disassembly has a great advantage in reducing disassembly time, and improving EBs and disassembly profit (DP).

References

1.
Duflou
,
J. R.
,
Sutherland
,
J. W.
,
Dornfeld
,
D.
,
Herrmann
,
C.
,
Jeswiet
,
J.
,
Kara
,
S.
,
Hauschild
,
M.
, and
Kellens
,
K.
,
2012
, “
Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach
,”
CIRP Ann. Manuf. Technol.
,
61
(
2
), pp.
587
609
.
2.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Zhang
,
H. C.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p. 041013.
3.
Ghazilla
,
R. A. R.
,
Sakundarini
,
N.
,
Taha
,
Z.
,
Abdul-Rashid
,
S. H.
, and
Yusoff
,
S.
,
2015
, “
Design for Environment and Design for Disassembly Practices in Malaysia: A Practitioner's Perspectives
,”
J. Cleaner Prod.
,
108
(
1
), pp.
331
342
.
4.
Ryan
,
A.
,
Donoghue
,
L. O.
, and
Lewis
,
H.
,
2011
, “
Characterising Components of Liquid Crystal Displays to Facilitate Disassembly
,”
J. Cleaner Prod.
,
19
(
9–10
), pp.
1066
1071
.
5.
Umeda
,
Y.
,
Miyaji
,
N.
,
Shiraishi
,
Y.
, and
Fukushige
,
S.
,
2015
, “
Proposal of a Design Method for Semi-Destructive Disassembly With Split Lines
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
29
32
.
6.
Vongbunyong
,
S.
,
Kara
,
S.
, and
Pagnucco
,
M.
,
2013
, “
Application of Cognitive Robotics in Disassembly of Products
,”
CIRP Ann. Manuf. Technology
,
62
(
1
), pp.
31
34
.
7.
Shan
,
H.
,
Li
,
S.
,
Huang
,
J.
,
Gao
,
Z.
, and
Li
,
W.
,
2007
, “
Ant Colony Optimization Algorithm-Based Disassembly Sequence Planning
,”
International Conference on Mechatronics and Automation
(
ICMA
), Harbin, China, Aug. 5–8, pp.
867
872
.
8.
Duflou
,
J. R.
,
Seliger
,
G.
,
Kara
,
S.
,
Umeda
,
Y.
,
Ometto
,
A.
, and
Willems
,
B.
,
2008
, “
Efficiency and Feasibility of Product Disassembly: A Case-Based Study
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
583
600
.
9.
Kara
,
S.
,
Pornprasitpol
,
P.
, and
Kaebernick
,
H.
,
2006
, “
Selective Disassembly Sequencing: A Methodology for the Disassembly of End-of-Life Products
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
37
40
.
10.
Cheung
,
W. M.
,
Marsh
,
R.
,
Griffin
,
P. W.
,
Newnes
,
L. B.
,
Mileham
,
A. R.
, and
Lanham
,
J. D.
,
2014
, “
Towards Cleaner Production: A Roadmap for Predicting Product End-of-Life Costs at Early Design Concept
,”
J. Cleaner Prod.
,
87
, pp.
431
441
.
11.
Smith
,
S. S.
, and
Chen
,
W. H.
,
2009
,
Rule-Based Recursive Selective Disassembly Sequence Planning for Green Design
,
Springer
,
London
.
12.
Rickli
,
J. L.
, and
Camelio
,
J. A.
,
2013
, “
Multi-Objective Partial Disassembly Optimization Based on Sequence Feasibility
,”
J. Manuf. Syst.
,
32
(
1
), pp.
281
293
.
13.
Ye
,
H.
, and
Liang
,
M.
,
2006
, “
Simultaneous Modular Product Scheduling and Manufacturing Cell Reconfiguration Using a Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
984
995
.
14.
Kang
,
J. G.
,
Lee
,
D. H.
,
Xirouchakis
,
P.
, and
Persson
,
J. G.
,
2001
, “
Parallel Disassembly Sequencing With Sequence-Dependent Operation Times
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
343
346
.
15.
Chaipradabgiat
,
T.
,
Jin
,
J.
, and
Shi
,
J.
,
2009
, “
Optimal Fixture Locator Adjustment Strategies for Multi-Station Assembly Processes
,”
IIE Trans.
,
41
(
9
), pp.
843
852
.
16.
Smith
,
S.
,
Smith
,
G.
, and
Chen
,
W. H.
,
2012
, “
Disassembly Sequence Structure Graphs: An Optimal Approach for Multiple-Target Selective Disassembly Sequence Planning
,”
Adv. Eng. Inf.
,
26
(
2
), pp.
306
316
.
17.
Zhao
,
S.
, and
Li
,
Y.
, 2010, “
Disassembly Sequence Decision Making for Products Recycling and Remanufacturing Systems
,”
International Symposium on Computational Intelligence and Design
(
ISCID
), Hangzhou, China, Oct. 29–31, pp.
44
48
.
18.
Li
,
J. R.
,
Khoo
,
L. P.
, and
Tor
,
S. B.
,
2002
, “
A Novel Representation Scheme for Disassembly Sequence Planning
,”
Int. J. Adv. Manuf. Technol.
,
20
(
8
), pp.
621
630
.
19.
Song
,
X. W.
, and
Pan
,
X. X.
,
2012
, “
Electromechanical Product Disassembly Sequence Planning Based on Partial Destruction Mode
,”
Comput. Integr. Manuf. Syst.
,
18
(
5
), pp.
927
931
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJJ201205005.htm
20.
Dong
,
B.
, and
Zhang
,
R.
,
2013
, “
Disassembly Sequence Planning Based on Synchronous Net
,”
Sixth International Symposium on Computational Intelligence and Design
(
ISCID
), Hangzhou, China, Oct. 28–29, pp.
297
300
.
21.
Fang
,
X. J.
,
Hua
,
Q. S.
, and
Feng
,
Z. Y.
,
2010
, “
Disassembly Sequence Planning Based on Ant Colony Optimization Algorithm
,” IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (
BIC-TA
), Changsha, China, Sept. 23–26, pp. 1125–1129.
22.
Sabaghi
,
M.
,
Mascle
,
C.
, and
Baptiste
,
P.
,
2016
, “
Evaluation of Products at Design Phase for an Efficient Disassembly at End-of-Life
,”
J. Cleaner Prod.
,
116
, pp.
177
186
.
23.
Fan
,
S. K. S.
,
Fan
,
C.
,
Yang
,
J. H.
, and
Liu
,
F. R.
,
2013
, “
Disassembly and Recycling Cost Analysis of Waste Notebook and the Efficiency Improvement by Re-Design Process
,”
J. Cleaner Prod.
,
39
, pp.
209
219
.
24.
Bi
,
L.
,
Zuo
,
Y.
,
Tao
,
F.
,
Liao
,
T. W.
, and
Liu
,
Z.
,
2017
, “
Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031007
.
25.
Haapala
,
K. R.
,
Catalina
,
A. V.
,
Johnson
,
M. L.
, and
Sutherland
,
J. W.
,
2012
, “
Development and Application of Models for Steelmaking and Casting Environmental Performance
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p. 051013.
26.
Shi
,
J.
,
Lu
,
L.
,
Guo
,
W.
,
Sun
,
Y.
, and
Cao
,
Y.
,
2014
, “
An Environment‐Friendly Thermal Insulation Material From Cellulose and Plasma Modification
,”
J. Appl. Polym. Sci.
,
130
(
5
), pp.
3652
3658
.
27.
Yuan
,
C. Y.
, and
Dornfeld
,
D. A.
,
2010
, “
Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030918
.
28.
Sarma
,
D. K.
, and
Dixit
,
U. S.
,
2009
, “
Environment-Friendly Strategies for Efficient Utilization of Cutting Tools in Finish Turning
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
064506
.
29.
Zou
,
J.
,
Arinez
,
J.
,
Chang
,
Q.
, and
Lei
,
Y.
,
2016
, “
Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121009
.
30.
Zhang
,
H.
, and
Haapala
,
K. R.
,
2014
, “
Integrating Sustainable Manufacturing Assessment Into Decision Making for a Production Work Cell
,”
J. Cleaner Prod.
,
105
, pp.
52
63
.
31.
Jie
,
X.
,
2011
, “
Research on Recycling Economy Oriented Product Disassembly Sequence Planning Approach
,”
International Conference on Management Science and Industrial Engineering
(
MSIE
), Harbin, China, Jan. 8–11, pp.
1112
1116
.
32.
Yeh
,
W. C.
, and
Wei
,
S. C.
,
2013
, “
Simplified Swarm Optimization in Efficient Tool Assignment of Disassembly Sequencing Problem
,” IEEE Congress on Evolutionary Computation (
CEC
), Cancun, Mexico, June 20–23, pp.
2712
2719
.
33.
Liu
,
X.
,
Peng
,
G.
,
Liu
,
X.
, and
Hou
,
Y.
,
2012
, “
Disassembly Sequence Planning Approach for Product Virtual Maintenance Based on Improved Max–Min Ant System
,”
Int. J. Adv. Manuf. Technol.
,
59
(
5
), pp.
829
839
.
34.
Xia
,
K.
,
Gao
,
L.
,
Li
,
W.
, and
Chao
,
K. M.
,
2014
, “
Disassembly Sequence Planning Using a Simplified Teaching–Learning-Based Optimization Algorithm
,”
Adv. Eng. Inf.
,
28
(
4
), pp.
518
527
.
35.
Liu
,
Y. C.
,
Lu
,
C.
, and
Wang
,
F. L.
, 2010, “
Disassembly Sequence Planning Approach Using an Advanced Immune Algorithm
,”
International Conference on Apperceiving Computing and Intelligence Analysis
(
ICACIA
), Chengdu, China, Dec. 17–19, pp.
14
17
.
36.
Pornsing
,
C.
, and
Watanasungsuit
,
A.
, 2014, “
Discrete Particle Swarm Optimization for Disassembly Sequence Planning
,”
IEEE International Conference on Management of Innovation and Technology
(
ICMIT
), Singapore, Sept. 23–25, pp.
480
485
.
37.
Xing
,
Y. F.
, and
Zhang
,
W. L.
, 2012, “
A Method of Partial Exploded View Generated Automatic Based on Disassembly Sequence Planning
,”
24th Chinese Control and Decision Conference
(
CCDC
), Taiyuan, China, May 23–25, pp.
4150
4153
.
38.
Mi
,
X.
,
Zhen
,
X.
,
Zhou
,
S.
, and
Fan
,
W.
, 2011, “
Research and Implementation on Visualization System of Disassembly Sequence Planning Based on Ant Colony Algorithm
,”
15th International Conference on Computer Supported Cooperative Work in Design
(
CSCWD
), Lausanne, Switzerland, June 8–10, pp.
581
585
.
39.
Tao
,
F.
,
Bi
,
L.
,
Zuo
,
Y.
, and
Nee
,
A. Y. C.
,
2017
, “
A Cooperative Co-Evolutionary Algorithm for Large-Scale Process Planning With Energy Consideration
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061016
.
40.
Tsai
,
C. W.
,
Song
,
H. J.
, and
Chiang
,
M. C.
, 2012, “
A Hyper-Heuristic Clustering Algorithm
,”
IEEE International Conference on Systems
, Man, and Cybernetics (
ICSMC
), Seoul, South Korea, Oct. 14–17, pp.
2839
2844
.
41.
Tao
,
F.
,
Bi
,
L. N.
,
Zuo
,
Y.
, and
Nee
,
A. Y. C.
,
2016
, “
A Hybrid Group Leader Algorithm for Green Material Selection With Energy Consideration in Product Design
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
9
12
.
42.
Riggs
,
R. J.
,
Jin
,
X.
, and
Hu
,
S. J.
,
2015
, “
Two-Stage Sequence Generation for Partial Disassembly of Products With Sequence Dependent Task Times
,”
Procedia Cirp
,
29
, pp.
698
703
.
43.
Els
,
R.
, and
Pillay
,
N.
, 2010, “
An Evolutionary Algorithm Hyper-Heuristic for Producing Feasible Timetables for the Curriculum Based University Course Timetabling Problem
,”
Nature and Biologically Inspired Computing
(
NABIC
), Kitakyushu, Japan, Dec. 15–17, pp.
460
466
.
44.
Kumari
,
A. C.
,
Srinivas
,
K.
, and
Gupta
,
M. P.
, 2013, “
Software Module Clustering Using a Hyper-Heuristic Based Multi-Objective Genetic Algorithm
,”
IEEE Third International Advance Computing Conference
(
IACC
), Ghaziabad, India, Feb. 22–23, pp.
813
818
.
45.
Grobler
,
J.
,
Engelbrecht
,
A. P.
,
Kendall
,
G.
, and
Yadavalli
,
V. S. S.
, 2014, “
Heuristic Space Diversity Management in a Meta-Hyper-Heuristic Framework
,”
IEEE Congress on Evolutionary Computation
(
CEC
), Beijing, China, July 6–11, pp.
1863
1869
.
46.
Han
,
L.
, and
Kendall
,
G.
,
2003
, “
An Investigation of a TABU Assisted Hyper-Heuristic Genetic Algorithm
,”
The 2003 Congress on Evolutionary Computation
(
CEC
), Canberra, Australia, pp.
2230
2237
.
47.
Tao
,
F.
, and
Qi
,
Q.
,
2017
, “
New IT Driven Service-Oriented Smart Manufacturing: Framework and Characteristics
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
PP
(
99
), pp.
1
11
.
48.
Li
,
J.
,
Tao
,
F.
,
Cheng
,
Y.
, and
Zhao
,
L.
,
2015
, “
Big Data in Product Lifecycle Management
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
667
684
.
49.
Fei
,
T.
,
Meng
,
Z.
,
Cheng
,
J.
, and
Qinglin
,
Q. I.
,
2017
, “
Digital Twin Workshop: A New Paradigm for Future Workshop
,”
Computer Integrated Manufacturing Systems
,
23
(1), pp. 1–9.http://www.cims-journal.cn/EN/10.13196/j.cims.2017.01.001
50.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2017
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
, epub.
You do not currently have access to this content.