Abstract

The wave infill for material extrusion (MEX) of the thin-walled structure (TWS) is presented. The wave infill, a lightweight truss-like porous core structure sandwiched between two outer walls, is an efficient toolpath pattern for the MEX of TWS. Analytical models for predicting the stiffness, load capacity, fabrication time, and mass were established for two orthogonal in-plane and layer-to-layer variations inherent in MEX wave infill parts. Rectangular prism, four-point flexural bending specimens representing the in-plane and layer-to-layer orientations with wave infill were fabricated by MEX of polyamide-12 (Nylon-12) material. From these specimens, fabrication time and mass were measured, and four-point flexural tests were conducted to measure the stiffness and load capacity of the beam. Analytical models were compared with the experimental measurements to identify their predictive capabilities. Stiffness for in-plane and layer-to-layer orientations was predicted well with the relative root-mean-square error (RRMSE) of 7% and 6%, respectively. Load capacity in in-plane and layer-to-layer orientations had the RRMSE of 23% and 22%, respectively. Fabrication time and mass were predicted well with a RRMSE of 7% and 6%, respectively. The methods established in this study are the foundation for optimal design and MEX of wave infill TWSs with generalized loads.

References

1.
ASTM Standard F2792-12a
,
2013
, “
Standard Terminology for Additive Manufacturing Technologies
,”
ASTM International
,
West Conshohocken, PA
, 2014, pp.
10
12
. 10.1520/F2792-12A.2
2.
Bischoff
,
M.
,
Bletzinger
,
K.-U.
,
Wall
,
W. A.
, and
Ramm
,
E.
,
2004
,
Encyclopedia of Computational Mechanics
,
John Wiley & Sons, Ltd
,
Chichester, UK
.
3.
Han
,
W.
,
Jafari
,
M. A.
,
Danforth
,
S. C.
, and
Safari
,
A.
,
2002
, “
Tool Path-Based Deposition Planning in Fused Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
462
472
. 10.1115/1.1455026
4.
Jin
,
Y.-A.
,
He
,
Y.
,
Xue
,
G.-H.
, and
Fu
,
J.-Z.
,
2015
, “
A Parallel-Based Path Generation Method for Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
927
937
. 10.1007/s00170-014-6530-z
5.
Han
,
W.
,
Jafari
,
M. A.
, and
Seyed
,
K.
,
2003
, “
Process Speeding up Via Deposition Planning in Fused Deposition-Based Layered Manufacturing Processes
,”
Rapid Prototyp. J.
,
9
(
4
), pp.
212
218
. 10.1108/13552540310489596
6.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2015
, “
Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects
,”
Adv. Manuf.
,
3
(
1
), pp.
42
53
. 10.1007/s40436-014-0097-7
7.
Chin Ang
,
K.
,
Fai Leong
,
K.
,
Kai Chua
,
C.
, and
Chandrasekaran
,
M.
,
2006
, “
Investigation of the Mechanical Properties and Porosity Relationships in Fused Deposition Modelling-Fabricated Porous Structures
,”
Rapid Prototyp. J.
,
12
(
2
), pp.
100
105
. 10.1108/13552540610652447
8.
Smith
,
J.
,
Hodgins
,
J.
,
Oppenheim
,
I.
, and
Witkin
,
A.
,
2002
, “
Creating Models of Truss Structures With Optimization
,”
ACM Trans. Graph.
,
21
(
3
), pp.
295
301
. 10.1145/566654.566580
9.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
2
), pp.
1127
1140
. 10.1109/TVCG.2017.2655523
10.
Wu
,
J.
,
Wang
,
C. C. L.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput. Des.
,
80
, pp.
32
42
. 10.1016/j.cad.2016.07.006
11.
Roger
,
F.
, and
Krawczak
,
P.
,
2015
, “
3D-Printing of Thermoplastic Structures by FDM Using Heterogeneous Infill and Multi-Materials: An Integrated Design-Advanced Manufacturing Approach for Factories of the Future
,”
Assoc. Française Mécanique
,
Lyon
, pp.
1
7
.
12.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization
,
Springer
,
Berlin, Germany
.
13.
Jin
,
Y.
,
He
,
Y.
, and
Du
,
J.
,
2017
, “
A Novel Path Planning Methodology for Extrusion-Based Additive Manufacturing of Thin-Walled Parts
,”
Int. J. Comput. Integr. Manuf.
,
30
(
12
), pp.
1301
1315
. 10.1080/0951192X.2017.1307526
14.
Swanson
,
W.
and
Mannella
,
D.
,
2014
, “
Method for Printing Three-Dimensional Parts With Additive Manufacturing Using Scaffolds
,”
0052287
.
Stratasys, Inc.
, Patent US9511547B2.
15.
Nordstrand
,
T.
,
2003
,
Basic Testing and Strength Design of Corrugated Board and Containers
,
Lund University
,
Lund, Sweden
.
16.
Luo
,
S.
,
Suhling
,
J. C.
,
Considine
,
J. M.
, and
Laufenberg
,
T. L.
,
1992
, “
The Bending Stiffnesses of Corrugated Board
,”
Mech. Cellul. Mater.
,
145
, pp.
15
26
.
17.
Chisena
,
R. S.
,
Lora
,
M. A. F.
,
Shih
,
A. J.
,
Bolger
,
D.
,
Wensman
,
J.
,
Hanson
,
A.
,
Larson
,
G.
, and
Holshouser
,
C.
,
2017
, “
Method of Additive Manufacturing an Internal Wave Sparse Structure With Geometry for Localized
Tunable Strucutrable Properties Throughout a Part
.” Patent US20180345650A1.
18.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Processes
,
6
(
2
), pp.
170
178
. 10.1016/S1526-6125(04)70071-7
19.
Bellini
,
A.
, and
Güçeri
,
S.
,
2003
, “
Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,”
Rapid Prototyp. J.
,
9
(
4
), pp.
252
264
. 10.1108/13552540310489631
20.
Casavola
,
C.
,
Cazzato
,
A.
,
Moramarco
,
V.
, and
Pappalettere
,
C.
,
2016
, “
Orthotropic Mechanical Properties of Fused Deposition Modelling Parts Described by Classical Laminate Theory
,”
Mater. Des.
,
90
, pp.
453
458
. 10.1016/j.matdes.2015.11.009
21.
Ahn
,
S. H.
,
Baek
,
C.
,
Lee
,
S.
, and
Ahn
,
I. S.
,
2003
, “
Anisotropic Tensile Failure Model of Rapid Prototyping Parts—Fused Deposition Modeling (FDM)
,”
Int. J. Mod. Phys. B.
,
17
(
8–9
), pp.
1510
1516
. 10.1142/S0217979203019241
22.
ASTM D790-10
,
2010
,
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials 1
.
ASTM International
,
West Conshohocken, PA
, 2014. www.astm.org
23.
Acrylic Copolymer; Stratasys, Inc.
,
Eden Praire, MN
,
Dec
8
,
2015
, https://www.stratasys.com/sds, Accessed Nov 10, 2017.
24.
Stewart
,
J.
,
1995
,
Calculus
,
Brooks/Cole Pub. Co.
,
Pacific Grove, CA
.
25.
Ryan
,
T. P.
,
2007
, “Miscellaneous Design Topics,”
Modern Experimental Design
,
John Wiley & Sons, Inc.
,
New York
, pp.
483
543
.
26.
FDM Nylon 12, Stratasys, Inc., Eden Praire, MN
,
n.d
., https://www.stratasys.com/materials/search/fdm-nylon-12, Accessed Nov 10, 2017.
27.
Chen
,
R. K.
,
Lo
,
T. T.
,
Chen
,
L.
, and
Shih
,
A. J.
,
2015
, “
Nano-CT Characterization of Structural Voids and Air Bubbles in Fused Deposition Modeling for Additive Manufacturing
,”
ASME 2015 International Manufacturing Science and Engineering Conference
, p.
V001T02A071
, Paper No. MSEC2015-9462.
28.
Hibbeler
,
R. C.
,
2011
,
Mechanics of Materials
, 9th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Weisstein
,
E. W.
,
n.d.
, “
Area Moment of Inertia, MathWorld–A Wolfram Web Resource
,” http://mathworld.wolfram.com/AreaMomentofInertia.html, Accessed February 10, 2018.
30.
Quinones
,
J. I.
,
2012
, “
Applying Acceleration and Deceleration Profiles to Bipolar Stepper Motors
,”
Analog Appl. J.
,
3Q
, pp.
24
28
.
31.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
You do not currently have access to this content.