Abstract

This paper presents a Gaussian process regression (GPR)-based approach to model the dynamic properties of a six-degree-of-freedom (6-DOF) industrial robot within its workspace. Discretely sampled modal parameters (modal frequency, modal stiffness, modal damping coefficient) of the robot structure determined through experimental modal analysis are used to develop the GPR model, which is then evaluated for its ability to accurately predict the modal parameters at different points in the workspace. The validation results show that the model captures the significant trends in the modal parameters within the sampling space but exhibits greater errors in regions further from the robot base. The results of the GPR model are also compared with those derived from an analytical model of the robot tool tip dynamics. The analytical model is found to overestimate the robot’s stiffness, especially in extended arm configurations, and to underestimate the natural frequency. The average peak-to-valley vibrations predicted by the GPR model during robotic end milling are compared with experimental results. The model-predicted peak-to-valley vibrations follow the measured values with a maximum error of 0.028 mm in the wall and floor surface directions. The results show that the GPR model presented in this paper can serve as a useful tool for understanding and optimizing the tool tip vibrations produced in robotic milling.

References

1.
Bi
,
Z. M.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
951
961
. 10.1016/j.rcim.2009.04.004
2.
Lehmann
,
C.
,
Pellicciari
,
M.
,
Drust
,
M.
, and
Gunnink
,
J. W.
,
2013
, “
Machining With Industrial Robots: The COMET Project Approach
,”
Rob. Smart Manuf.
,
371
(
1
), pp.
27
36
. 10.1007/978-3-642-39223-8_3
3.
Schreck
,
G.
,
Surdilovic
,
D.
, and
Krueger
,
J.
,
2014
, “
HEPHESTOS: Hard Material Small-Batch Industrial Machining Robot
,”
Proceedings of ISR/Robotik 2014: 41st International Symposium on Robotics
,
Munich
,
June 2–3
, pp.
1
6.
4.
Hu
,
Y.
, and
Chen
,
Y.
,
1999
, “
Implementation of a Robot System for Sculptured Surface Cutting. Part 1. Rough Machining
,”
Int. J. Adv. Manuf. Technol.
,
15
(
9
), pp.
624
629
. 10.1007/s001700050111
5.
Tyapin
,
I.
,
Hovland
,
G.
,
Kosonen
,
P.
, and
Linna
,
T.
,
2014
, “
Identification of a Static Tool Force Model for Robotic Face Milling
,”
Proceedings of 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA)
,
Senigallia
,
Sep. 10–12
, pp.
1
6
.
6.
Kaldestad
,
K. B.
,
Tyapin
,
I.
, and
Hovland
,
G.
,
2015
, “
Robotic Face Milling Path Correction and Vibration Reduction
,”
Proceedings of 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Busan, South Korea
,
July 7–11
, pp.
543
548
.
7.
Cen
,
L.
, and
Melkote
,
S. N.
,
2017
, “
CCT-Based Mode Coupling Chatter Avoidance in Robotic Milling
,”
J. Manuf. Processes
,
29
(
1
), pp.
50
61
. 10.1016/j.jmapro.2017.06.010
8.
Pan
,
Z.
, and
Zhang
,
H.
,
2007
, “
Analysis and Suppression of Chatter in Robotic Machining Process
,”
Proceedings of 2007 International Conference on Control, Automation and Systems
,
Seoul
,
Oct. 17–20
, pp.
595
600
.
9.
Cen
,
L.
, and
Melkote
,
S. N.
,
2017
, “
Effect of Robot Dynamics on the Machining Forces in Robotic Milling
,”
Procedia Manuf.
,
10
(
1
), pp.
486
496
. 10.1016/j.promfg.2017.07.034
10.
Mejri
,
S.
,
Gagnol
,
V.
,
Le
,
T.-P.
,
Sabourin
,
L.
,
Ray
,
P.
, and
Paultre
,
P.
,
2016
, “
Dynamic Characterization of Machining Robot and Stability Analysis
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
351
359
. 10.1007/s00170-015-7336-3
11.
Klimchik
,
A.
,
Bondarenko
,
D.
,
Pashkevich
,
A.
,
Briot
,
S.
, and
Furet
,
B.
,
2014
, “
Compliance Error Compensation in Robotic-Based Milling
,”
Inf. Control Autom. Rob.
,
283
(
1
), pp.
197
216
. 10.1007/978-3-319-03500-0_13
12.
Cetinkunt
,
S.
, and
Book
,
W. J.
,
1989
, “
Symbolic Modeling and Dynamic Simulation of Robotic Manipulators With Compliant Links and Joints
,”
Rob. Comput. Integr. Manuf.
,
5
(
4
), pp.
301
310
. 10.1016/0736-5845(89)90004-5
13.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
554
564
. 10.1109/TRO.2004.842347
14.
De Caigny
,
J.
,
Camino
,
J. F.
, and
Swevers
,
J.
,
2011
, “
Interpolation-Based Modeling of MIMO LPV Systems
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
46
63
. 10.1109/TCST.2010.2078509
15.
Ferranti
,
F.
, and
Rolain
,
Y.
,
2017
, “
A Local Identification Method for Linear Parameter-Varying Systems Based on Interpolation of State-Space Matrices and Least-Squares Approximation
,”
Mech. Syst. Sig. Process.
,
82
(
1
), pp.
478
489
. 10.1016/j.ymssp.2016.05.037
16.
Krige
,
D. G.
,
1951
,
A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand
,
University of the Witwatersrand
,
Johannesburg
.
17.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
. 10.1214/ss/1177012413
18.
Rasmussen
,
C. E.
,
2004
, “Gaussian Processes in Machine Learning,”
Advanced Lectures on Machine Learning
,
O.
Bousquet
,
U.
von Luxburg
, and
G.
Rätsch
, eds.,
Springer
,
Berlin
, pp.
63
71
.
19.
Laslett
,
G. M.
,
1994
, “
Kriging and Splines: An Empirical Comparison of Their Predictive Performance in Some Applications
,”
J. Am. Stat. Assoc.
,
89
(
426
), pp.
391
400
. 10.1080/01621459.1994.10476759
20.
Deng
,
C.
,
Miao
,
J.
,
Wei
,
B.
,
Feng
,
Y.
, and
Zhao
,
Y.
,
2018
, “
Evaluation of Machine Tools With Position-Dependent Milling Stability Based on Kriging Model
,”
Int. J. Mach. Tools Manuf.
,
124
(
1
), pp.
33
42
. 10.1016/j.ijmachtools.2017.09.004
21.
Dumas
,
C.
,
Caro
,
S.
,
Garnier
,
S.
, and
Furet
,
B.
,
2011
, “
Joint Stiffness Identification of Six-Revolute Industrial Serial Robots
,”
Rob. Comput. Integr. Manuf.
,
27
(
4
), pp.
881
888
. 10.1016/j.rcim.2011.02.003
22.
Ginsberg
,
J. H.
,
2001
,
Mechanical and Structural Vibrations: Theory and Applications
,
Wiley
,
New York
.
23.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
24.
Bracewell
,
R. N.
, and
Bracewell
,
R. N.
,
1986
,
The Fourier Transform and Its Applications
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.