Conformally integrating conductive circuits with rigid 3D surfaces is a key need for smart materials and structures. This paper investigates sequential thermoforming and flash light sintering (FLS) of conductive silver (Ag) nanowire (NW) interconnects printed on planar polymer sheets. The resulting interconnect–polymer assemblies are thus preshaped to the desired 3D geometry and can be robustly attached to the surface. This conformal circuit integration approach avoids interconnect delamination in manual conformation of planar flexible electronics, eliminates heating of the 3D object in direct conformal printing, and enables easy circuit replacement. The interconnect resistance increases after thermoforming, but critically, is reduced significantly by subsequent FLS. The resistance depends nonlinearly on the forming strain, interconnect thickness, and FLS fluence. The underlying physics behind these observations are uncovered by understanding interconnect morphology and temperature evolution during the process. With the optimal parameters found here, this process achieves interconnect resistance of <10 Ω/cm within 90.8 s at 100% maximum strain over a 1 square inch forming area. The application of this process for complex surfaces is demonstrated via a simple conformal LED-lighting circuit. The potential of this approach to enable surface size and material insensitivity, robust integration, and easy replaceability for conformal circuit fabrication is discussed.

References

1.
Le Borgne
,
B.
,
De Sagazan
,
O.
,
Crand
,
S.
,
Jacques
,
E.
, and
Harnois
,
M.
,
2017
, “
Conformal Electronics Wrapped Around Daily Life Objects Using an Original Method: Water Transfer Printing
,”
ACS Appl. Mater. Interfaces
,
9
(
35
), pp.
29424
29429
.
2.
Adams
,
J. J.
,
Duoss
,
E. B.
,
Malkowski
,
T. F.
,
Motala
,
M. J.
,
Ahn
,
B. Y.
,
Nuzzo
,
R. G.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces
,”
Adv. Mater.
,
23
(
11
), pp.
1335
1340
.
3.
Kim
,
D.-H.
,
Xiao
,
J.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2010
, “
Stretchable, Curvilinear Electronics Based on Inorganic Materials
,”
Adv. Mater.
,
22
(
19
), pp.
2108
2124
.
4.
Jo
,
Y.
,
Kim
,
J. Y.
,
Jung
,
S.
,
Ahn
,
B. Y.
,
Lewis
,
J. A.
,
Choi
,
Y.
, and
Jeong
,
S.
,
2017
, “
3D Polymer Objects With Electronic Components Interconnected Via Conformally Printed Electrodes
,”
Nanoscale
,
9
(
39
), pp.
14798
14803
.
5.
Meng
,
F.
, and
Huang
,
J.
,
2018
, “
Fabrication of Conformal Array Patch Antenna Using Silver Nanoink Printing and Flash Light Sintering
, ”
AIP Adv.
,
8
(
8
), p.
085118
.
6.
Bausch
,
N.
,
Dawkins
,
D. P.
,
Frei
,
R.
, and
Klein
,
S.
,
2016
, “
3D Printing onto Unknown Uneven Surfaces
,”
IFAC-PapersOnLine
,
49
(
21
), pp.
583
590
.
7.
Wu
,
S.-Y.
,
Yang
,
C.
,
Hsu
,
W.
, and
Lin
,
L.
,
2015
, “
3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
,”
Microsyst. Nanoeng.
,
1
,
15013
.
8.
Lucchini
,
R.
,
Cattarinuzzi
,
E.
,
Maraghechi
,
S.
,
Gastaldi
,
D.
,
Adami
,
A.
,
Lorenzelli
,
L.
, and
Vena
,
P.
,
2016
, “
Delamination Phenomena in Aluminum/Polyimide Deformable Interconnects: In-Situ Micro-Tensile Testing
,”
Mater. Des.
,
89
, pp.
121
128
.
9.
Gray
,
D. S.
,
Tien
,
J.
, and
Chen
,
C. S.
,
2004
, “
High-Conductivity Elastomeric Electronics
,”
Adv. Mater.
,
16
(
5
), pp.
393
397
.
10.
Kim
,
Y.
,
Lee
,
D. H.
,
Kim
,
D.-H.
, and
Kim
,
J.-W.
,
2015
, “
Flexible and Transparent Electrode Based on Silver Nanowires and a Urethane Acrylate Incorporating Diels–Alder Adducts
,”
Mater. Des.
,
88
, pp.
1158
1163
.
11.
Hwang
,
B.
,
An
,
C.-H.
, and
Becker
,
S.
,
2017
, “
Highly Robust Ag Nanowire Flexible Transparent Electrode With UV-Curable Polyurethane-Based Overcoating Layer
,”
Mater. Des.
,
129
, pp.
180
185
.
12.
Kim
,
D.-H.
,
Kim
,
Y.
, and
Kim
,
J.-W.
,
2016
, “
Transparent and Flexible Film for Shielding Electromagnetic Interference
,”
Mater. Des.
,
89
, pp.
703
707
.
13.
Paulsen
,
J. A.
,
Renn
,
M.
,
Christenson
,
K.
, and
Plourde
,
R.
,
2012
, “
Printing Conformal Electronics on 3D Structures With Aerosol Jet Technology
,”
2012 Future of Instrumentation International Workshop (FIIW) Proceedings
,
Gatlinburg, TN
,
Oct. 8–9
, pp.
1
4
.
14.
Kim
,
S. Y.
,
Kim
,
K.
,
Hwang
,
Y. H.
,
Park
,
J.
,
Jang
,
J.
,
Nam
,
Y.
,
Kang
,
Y.
,
Kim
,
M.
,
Park
,
H. J.
,
Lee
,
Z.
,
Choi
,
J.
,
Kim
,
Y.
,
Jeong
,
S.
,
Bae
,
B. S.
, and
Park
,
J. U.
,
2016
, “
High-Resolution Electrohydrodynamic Inkjet Printing of Stretchable Metal Oxide Semiconductor Transistors With High Performance
,”
Nanoscale
,
8
(
39
), pp.
17113
17121
.
15.
Vaithilingam
,
J.
,
Saleh
,
E.
,
Körner
,
L.
,
Wildman
,
R. D.
,
Hague
,
R. J. M.
,
Leach
,
R. K.
, and
Tuck
,
C. J.
,
2018
, “
3-Dimensional Inkjet Printing of Macro Structures from Silver Nanoparticles
,”
Mater. Des.
,
139
, pp.
81
88
.
16.
Mueller
,
J.
,
Shea
,
K.
, and
Daraio
,
C.
,
2015
, “
Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design
,”
Mater. Des.
,
86
, pp.
902
912
.
17.
Qin
,
H.
,
Cai
,
Y.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2016
, “
Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing With Silver Nanoinks
,”
J. Manuf. Sci. Eng.
,
139
(
3
), pp.
031011
0310117
.
18.
Salary
,
R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
J. Manuf. Sci. Eng.
,
139
(
10
), pp.
101010
101013
.
19.
Sun
,
H.
,
Wang
,
K.
,
Li
,
Y.
,
Zhang
,
C.
, and
Jin
,
R.
,
2017
, “
Quality Modeling of Printed Electronics in Aerosol Jet Printing Based on Microscopic Images
,”
J. Manuf. Sci. Eng.
,
139
(
7
), pp.
07101201
07101210
.
20.
Qin
,
H.
,
Wei
,
C.
,
Dong
,
J.
, and
Lee
,
Y.-S.
,
2016
, “
Direct Printing and Electrical Characterization of Conductive Micro-Silver Tracks by Alternating Current-Pulse Modulated Electrohydrodynamic Jet Printing
,”
J. Manuf. Sci. Eng.
,
139
(
2
), pp.
02100801
02100810
.
21.
Finn
,
D. J.
,
Lotya
,
M.
, and
Coleman
,
J. N.
,
2015
, “
Inkjet Printing of Silver Nanowire Networks
,”
ACS Appl. Mater. Interfaces
,
7
(
17
), pp.
9254
9261
.
22.
Lu
,
H.
,
Na Wu
,
J. L.
,
Nie
,
S.
,
Luo
,
Q.
,
Mab
,
C.-Q.
, and
Cui
,
Z.
,
2015
, “
Inkjet Printed Silver Nanowire Network as Top Electrode for Semi-Transparent Organic Photovoltaic Devices
,”
Appl. Phys. Lett.
,
106
(
9
), pp.
093302
.
23.
Yang
,
C.
, and
Hung
,
S.-W.
,
2004
, “
Modeling and Optimization of a Plastic Thermoforming Process
,”
J. Reinf. Plast. Compos
,
23
(
1
), pp.
109
121
.
24.
Guzman-Maldonado
,
E.
,
Hamila
,
N.
,
Naouar
,
N.
,
Moulin
,
G.
, and
Boisse
,
P.
,
2016
, “
Simulation of Thermoplastic Prepreg Thermoforming Based on a Visco-Hyperelastic Model and a Thermal Homogenization
,”
Mater. Des.
,
93
, pp.
431
442
.
25.
Ropers
,
S.
,
Kardos
,
M.
, and
Osswald
,
T. A.
,
2016
, “
A Thermo-Viscoelastic Approach for the Characterization and Modeling of the Bending Behavior of Thermoplastic Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
90
, pp.
22
32
.
26.
Kwak
,
J. H.
,
Chun
,
S. J.
,
Shon
,
C.-H.
, and
Jung
,
S.
,
2018
, “
Back-Irradiation Photonic Sintering for Defect-Free High-Conductivity Metal Patterns on Transparent Plastic
,”
Appl. Phys. Lett.
,
112
(
15
), pp.
153103
.
27.
Niittynen
,
J.
,
Sowade
,
E.
,
Kang
,
H.
,
Baumann
,
R. R.
, and
Mäntysalo
,
M.
,
2015
, “
Comparison of Laser and Intense Pulsed Light Sintering (IPL) for Inkjet-Printed Copper Nanoparticle Layers
,”
Sci. Rep.
,
5
, p.
8832
.
28.
Dexter
,
M.
,
Gao
,
Z.
,
Bansal
,
S.
,
Chang
,
C.-H.
, and
Malhotra
,
R.
,
2018
, “
Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films
,”
Sci. Rep.
,
8
(
1
), p.
2201
29.
Bansal
,
S.
, and
Malhotra
,
R.
,
2016
, “
Nanoscale-Shape-Mediated Coupling Between Temperature and Densification in Intense Pulsed Light Sintering
,”
Nanotechnology
,
27
(
49
), pp.
495602
.
30.
Kang
,
J.
,
Ryu
,
J.
,
Kim
,
H.
, and
Hahn
,
H.
,
2011
, “
Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light
,”
J. Electron. Mater.
,
40
(
11
), pp.
2268
.
31.
Hwang
,
H.-J.
,
Joo
,
S.-J.
, and
Kim
,
H.-S.
,
2015
, “
Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films With High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering
,”
ACS Appl. Mater. Interfaces
,
7
(
45
), pp.
25413
25423
.
32.
Garnett
,
E. C.
,
Cai
,
W.
,
Cha
,
J. J.
,
Mahmood
,
F.
,
Connor
,
S. T.
,
Christoforo
,
M. G.
,
Cui
,
Y.
,
McGehee
,
M. D.
, and
Brongersma
,
M. L.
,
2012
, “
Self-Limited Plasmonic Welding of Silver Nanowire Junctions
,”
Nat. Mater.
,
11
(
3
), pp.
241
.
33.
Jang
,
Y.-R.
,
Chung
,
W.-H.
,
Hwang
,
Y.-T.
,
Hwang
,
H.-J.
,
Kim
,
S.-H.
, and
Kim
,
H.-S.
,
2018
, “
Selective Wavelength Plasmonic Flash Light Welding of Silver Nanowires for Transparent Electrodes With High Conductivity
,”
ACS Appl. Mater. Interfaces
,
10
(
28
), pp.
24099
24107
.
34.
Chung
,
W.-H.
,
Hwang
,
H.-J.
,
Lee
,
S.-H.
, and
Kim
,
H.-S.
,
2012
, “
In situ Monitoring of a Flash Light Sintering Process Using Silver Nano-Ink for Producing Flexible Electronics
,”
Nanotechnology
,
24
(
3
), pp.
035202
.
35.
MacNeill
,
W.
,
Choi
,
C.-H.
,
Chang
,
C.-H.
, and
Malhotra
,
R.
,
2015
, “
On the Self-Damping Nature of Densification in Photonic Sintering of Nanoparticles
,”
Sci. Rep.
,
5
, pp.
14845
.
36.
Park
,
S.-H.
, and
Kim
,
H.-S.
,
2014
, “
Flash Light Sintering of Nickel Nanoparticles for Printed Electronics
,”
Thin Solid Films
,
550
, pp.
575
581
.
37.
Kim
,
H.-S.
,
Dhage
,
S. R.
,
Shim
,
D.-E.
, and
Hahn
,
H. T.
,
2009
, “
Intense Pulsed Light Sintering of Copper Nanoink for Printed Electronics
,”
Appl. Phys. A
,
97
(
4
), pp.
791
.
38.
Hwang
,
H.-J.
,
Oh
,
K.-H.
, and
Kim
,
H.-S.
,
2016
, “
All-Photonic Drying and Sintering Process via Flash White Light Combined With Deep-UV and Near-Infrared Irradiation for Highly Conductive Copper Nano-Ink
,”
Sci. Rep.
,
6
, pp.
19696
.
39.
Dharmadasa
,
R.
,
Dharmadasa
,
I.
, and
Druffel
,
T.
,
2014
, “
Intense Pulsed Light Sintering of Electrodeposited CdS Thin Films
,”
Adv. Eng. Mater.
,
16
(
11
), pp.
1351
1361
.
40.
Colorado
,
H.
,
Dhage
,
S.
, and
Hahn
,
H.
,
2011
, “
Thermo Chemical Stability of Cadmium Sulfide Nanoparticles Under Intense Pulsed Light Irradiation and High Temperatures
,”
Mater. Sci. Eng. B
,
176
(
15
), pp.
1161
1168
.
41.
Dharmadasa
,
R.
,
Lavery
,
B.
,
Dharmadasa
,
I.
, and
Druffel
,
T.
,
2014
, “
Intense Pulsed Light Treatment of Cadmium Telluride Nanoparticle-Based Thin Films
,”
ACS Appl. Mater. Interfaces
,
6
(
7
), pp.
5034
5040
.
42.
Hwang
,
H.-J.
, and
Kim
,
H.-S.
,
2015
, “
Ultra-High Speed Fabrication of TiO2 Photoanode by Flash Light for Dye-Sensitized Solar Cell
,”
J. Nanosci. Nanotechnol.
,
15
(
7
), pp.
5028
5034
.
43.
Danaei
,
R.
,
Varghese
,
T.
,
Ahmadzadeh
,
M.
,
McCloy
,
J.
,
Hollar
,
C.
,
Sadeq Saleh
,
M.
,
Park
,
J.
,
Zhang
,
Y.
, and
Panat
,
R.
,
2018
, “
Ultrafast Fabrication of Thermoelectric Films by Pulsed Light Sintering of Colloidal Nanoparticles on Flexible and Rigid Substrates
,”
Adv. Eng. Mater.
21
, p.
6
.
44.
Inoue
,
T.
,
Okamoto
,
H.
, and
Osaki
,
K.
,
1992
, “
Large Deformation of Polycarbonate Near the Glass Transition Temperature
,”
Macromolecules
,
25
(
25
), pp.
7069
7070
.
45.
Michael
,
D.
,
Andrew
,
P.
,
Zhongwei
,
G.
,
Gregory
,
S. H.
,
Chih-hung
,
C.
, and
Rajiv
,
M.
,
2018
, “
Modeling Nanoscale Temperature Gradients and Conductivity Evolution in Pulsed Light Sintering of Silver Nanowire Networks
,”
Nanotechnology
,
29
(
50
), pp.
505205
.
46.
Mutiso
,
R. M.
,
Sherrott
,
M. C.
,
Rathmell
,
A. R.
,
Wiley
,
B. J.
, and
Winey
,
K. I.
,
2013
, “
Integrating Simulations and Experiments to Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors
,”
ACS Nano.
,
7
(
9
), pp.
7654
7663
.
47.
Lambricht
,
N.
,
Pardoen
,
T.
, and
Yunus
,
S.
,
2013
, “
Giant Stretchability of Thin Gold Films on Rough Elastomeric Substrates
,”
Acta Mater.
,
61
(
2
), pp.
540
547
.
48.
Erdem Alaca
,
B.
,
Saif
,
M. T. A.
, and
Sehitoglu
,
H.
,
2002
, “
On the Interface Debond at the Edge of a Thin Film on a Thick Substrate
,”
Acta Mater.
,
50
(
5
), pp.
1197
1209
.
49.
Pritesh
,
G.
,
Dana
,
M.
,
Enrico
,
S.
,
Kalyan Yoti
,
M.
,
Henrique Leonel
,
G.
,
Eloi
,
R.
,
Ammar
,
A.-H.
,
Olfa
,
K.
, and
Reinhard
,
R. B.
,
2017
, “
Controlling the Crack Formation in Inkjet-Printed Silver Nanoparticle Thin-Films for High Resolution Patterning Using Intense Pulsed Light Treatment
,”
Nanotechnology
,
28
(
49
), pp.
495301
.
50.
Selzer
,
F.
,
Floresca
,
C.
,
Kneppe
,
D.
,
Bormann
,
L.
,
Sachse
,
C.
,
Weiß
,
N.
,
Eychmüller
,
A.
,
Amassian
,
A.
,
Müller-Meskamp
,
L.
, and
Leo
,
K.
,
2016
, “
Electrical Limit of Silver Nanowire Electrodes: Direct Measurement of the Nanowire Junction Resistance
,”
Appl. Phys. Lett.
,
108
(
16
), pp.
163302
.
51.
Jiu
,
J.
,
Nogi
,
M.
,
Sugahara
,
T.
,
Tokuno
,
T.
,
Araki
,
T.
,
Komoda
,
N.
,
Suganuma
,
K.
,
Uchida
,
H.
, and
Shinozaki
,
K.
,
2012
, “
Strongly Adhesive and Flexible Transparent Silver Nanowire Conductive Films Fabricated With a High-Intensity Pulsed Light Technique
,”
J. Mater. Chem.
,
22
(
44
), pp.
23561
23567
.
52.
Mallikarjuna
,
K.
,
Hwang
,
H.-J.
,
Chung
,
W.-H.
, and
Kim
,
H.-S.
,
2016
, “
Photonic Welding of Ultra-Long Copper Nanowire Network for Flexible Transparent Electrodes Using White Flash Light Sintering
,”
RSC Adv.
,
6
(
6
), pp.
4770
4779
.
53.
Jiu
,
J.
,
Sugahara
,
T.
,
Nogi
,
M.
,
Araki
,
T.
,
Suganuma
,
K.
,
Uchida
,
H.
, and
Shinozaki
,
K.
,
2013
, “
High-Intensity Pulse Light Sintering of Silver Nanowire Transparent Films on Polymer Substrates: The Effect of the Thermal Properties of Substrates on the Performance of Silver Films
,”
Nanoscale
,
5
(
23
), pp.
11820
11828
.
54.
Yang
,
L.
,
Gan
,
Y.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2012
, “
Molecular Dynamics Simulation of Neck Growth in Laser Sintering of Different-Sized Gold Nanoparticles Under Different Heating Rates
,”
Appl. Phys. A
,
106
(
3
), pp.
725
735
.
You do not currently have access to this content.