Selective laser heat treatment allows local modification of material properties and can have a wide range of applications within the automotive industry. Enhanced formability and strength are possible to achieve. As the process involves selective heating, positioning of the heat treatment pattern in local areas is vital. Pattern positioning is often suggested based on the part design and forming aspects of the material to avoid failures during manufacturing. Along with improving material properties in desired local areas, the process also produces unwanted distortion in the material. Such effects on variation should be considered and minimized. In this paper, the heat treatment pattern is offset from its original position and its effect on geometrical variation is investigated. Boron steel blanks are selectively laser heat treated with a specific heat treatment pattern and then cold formed to the desired shape. Two heat treatment pattern dimensions are examined. Geometrical variation at the blank level and after cold forming, and springback after cold forming are observed. Results show that pattern offsetting increases the effect on geometrical variation. Therefore, correct positioning of the heat treatment pattern is important to minimize its effect on geometrical variation along with enhancement in the material properties. Knowledge from this study will contribute to various stages of the geometry assurance process.

References

1.
Merklein
,
M.
,
Johannes
,
M.
,
Lechner
,
M.
, and
Kuppert
,
A.
,
2014
, “
A Review on Tailored Blanks—Production, Applications and Evaluation
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
151
164
.
2.
Asnafi
,
N.
,
Andersson
,
R.
,
Persson
,
M.
, and
Liljengren
,
M.
,
2016
, “
Tailored Boron Steel Sheet Component Properties by Selective Laser Heat Treatment
,”
IOP Conference Series: Materials Science and Engineering
,
Linz, Austria
.
3.
Vollertsen
,
F.
, and
Lange
,
K.
,
1998
, “
Enhancement of Drawability by Local Heat Treatment
,”
CIRP Ann.
,
47
(
1
), pp.
181
184
.
4.
Hofmann
,
A.
,
2001
, “
Deep Drawing of Process Optimized Blanks
,”
J. Mater. Process. Technol.
,
119
(
1
), pp.
127
132
.
5.
Geiger
,
M.
,
Merklein
,
M.
, and
Kerausch
,
M.
,
2004
, “
Finite Element Simulation of Deep Drawing of Tailored Heat Treated Blanks
,”
CIRP Ann.
,
53
(
1
), pp.
223
226
.
6.
Geiger
,
M.
,
Merklein
,
M.
,
Staud
,
D.
, and
Kaupper
,
M.
,
2008
, “
An Inverse Approach to the Numerical Design of the Process Sequence of Tailored Heat Treated Blanks
,”
Prod. Eng.
,
2
(
1
), pp.
15
20
.
7.
Geiger
,
M.
,
Merklein
,
M.
, and
Vogt
,
U.
,
2009
, “
Aluminum Tailored Heat Treated Blanks
,”
Prod. Eng.
,
3
(
4–5
), pp.
401
410
.
8.
Hung
,
N.
, and
Marion
,
M.
,
2012
, “
Improved Formability of Aluminum Alloys Using Laser Induced Hardening of Tailored Heat Treated Blanks
,”
Phys. Proc.
,
39
, pp.
318
326
.
9.
Merklein
,
M.
, and
Nguyen
,
H.
,
2010
, “
Advanced Laser Heat Treatment with Respect for the Application for Tailored Heat Treated Blanks
,”
Phys. Proc.
,
5
, pp.
233
242
.
10.
Mjali
,
K. V.
,
Els-Botes
,
A.
, and
Mashinini
,
P. M.
,
2018
, “
Residual Stress Distribution and the Concept of Total Fatigue Stress in Laser and Mechanically Formed Commercially Pure Grade 2 Titanium Alloy Plates
,”
J. Manuf. Sci. Eng.
,
140
(
6
),
061005
.
11.
Neugebauer
,
R.
,
Scheffler
,
S.
,
Poprawe
,
R.
, and
Weisheit
,
A.
,
2009
, “
Local Laser Heat Treatment of Ultra High Strength Steels to Improve Formability
,”
Prod. Eng.
,
3
(
4-5
), pp.
347
351
.
12.
Conrads
,
L.
,
Daamen
,
M.
,
Hirt
,
G.
, and
Bambach
,
M.
,
2016
, “
Improving the Crash Behavior of Structural Components Made of Advanced High Strength Steel by Local Heat Treatment
,”
IOP Conference Series: Materials Science and Engineering
.
Linz, Austria
.
13.
Conrads
,
L.
,
Liebsch
,
C.
, and
Hirt
,
G.
,
2017
, “
Increasing the Energy Absorption Capacity of Structural Components Made of Low Alloy Steel by Combining Strain Hardening and Local Heat Treatment
,”
Proc. Eng.
,
207
, pp.
257
262
.
14.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
J. Manuf. Sci. Eng.
,
139
(
10
),
101004
.
15.
Gameros
,
A. A.
,
Axinte
,
D.
,
Siller
,
H. R.
,
Lowth
,
S.
, and
Winton
,
P.
,
2016
, “
Experimental and Numerical Study of a Fixturing System for Complex Geometry and Low Stiffness Components
,”
J. Manuf. Sci. Eng.
,
139
(
4
),
045001
.
16.
Dutta Majumdar
,
J.
, and
Manna
,
I.
,
2003
, “
Laser Processing of Materials
,”
Sadhana
,
28
(
3
), pp.
495
562
.
17.
Chen
,
Y. F.
,
Huang
,
T. M.
,
Kao
,
C. F.
,
Wang
,
C. L.
, and
Wang
,
S. C.
,
1997
, “
Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect
,”
IEEE J. Quantum Electron.
,
33
(
8
), pp.
1424
1429
.
18.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
, “
Laser Surface Treatment
,”
Laser Material Processing
,
Springer
,
London
, pp.
295
347
.
19.
Mohammadi
,
A.
,
Vanhove
,
H.
,
Van Bael
,
A.
,
Seefeldt
,
M.
, and
Duflou
,
J. R.
,
2016
, “
Effect of Laser Transformation Hardening on the Accuracy of SPIF Formed Parts
,”
J. Manuf. Sci. Eng.
,
139
(
1
),
011007
.
20.
Pretorius
,
T.
,
2017
, “
Laser Forming
,”
The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology
,
J.
Dowden
and
W.
Schulz
, eds.,
Springer International Publishing
,
Cham
,
Switzerland
, pp.
307
340
.
21.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2000
, “
Robust Design & Tolerancing from Concept to Process Selection
,”
CIRP International Seminar on Manufacturing Systems
,
Stockholm, Sweden
.
22.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Des.
,
17
(
5
), pp.
411
428
.
23.
Sagar
,
V. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
Geometrical Variation from Selective Laser Heat Treatment of Boron Steels
,”
Proc. CIRP
,
75
, pp.
409
414
.
24.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J.
,
2006
, “
Virtual Geometry Assurance for Effective Product Realization
,”
First Nordic Conference on Product Lifecycle Management-NordPLM
,
Göteborg, Sweden
, pp.
25
26
.
25.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J.
,
2006
, “
Managing Physical Dependencies Through Location System Design
,”
J. Eng. Des.
,
17
(
4
), pp.
325
346
.
26.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2014
, “
Decoupled Fixturing Strategies for Minimized Geometrical Variation During Cutting of Stamped Parts
,”
Proc. Inst. Mech. Eng. Part B
,
228
(
11
), pp.
1401
1408
.
27.
Andersson
,
A.
,
2007
, “
Numerical and Experimental Evaluation of Springback in Advanced High Strength Steel
,”
J. Mater. Eng. Perform.
,
16
(
3
), pp.
301
307
.
28.
RD&T Technology
,
2017
, “
Improving Decision Making by Simulating and Visualizing the Effect of Geometrical Variation
”, accessed November 28, 2018, http://www.rdnt.se/.
29.
30.
Soderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
You do not currently have access to this content.