Reliable and robust tab joints in pouch cells are key to the functional reliability and durability of lithium-ion batteries. In this study, a novel solder-reinforced adhesive (SRA) bonding technology is applied to lithium-ion battery tab joining, and its feasibility is explored by the application of simplified specimens. The three main components involved in the implementation of the SRA process are the substrate, solder ball, and adhesive system. The application of flux to the solder balls and the size of the adhesive application area are the two main process variables. Results showed that both the flux and adhesive area have positive correlation with the mechanical performance due to the formation of a robust connection of the solder and the substrate. In addition, the SRA joints have a relatively lower resistivity than joints fabricated by conventional ultrasonic welding (USW) technology. Thus, there is significant potential for this process to be applied for joining of battery tabs.

References

1.
Poizot
,
P.
,
Laruelle
,
S.
,
Grugeon
,
S.
,
Dupont
,
L.
, and
Tarascon
,
J.-M.
,
2000
, “
Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries
,”
Nature
,
407
, pp.
496
499
.
2.
Blomgren
,
G. E.
,
2016
, “
The Development and Future of Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A5019
A5025
.
3.
Das
,
A.
,
Li
,
D.
,
Williams
,
D.
, and
Greenwood
,
D.
,
2017
, “
Joining Technologies for Automotive Battery Systems Manufacturing
,”
EVS30 Symposium
,
Stuttgart, Germany
.
4.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing-A Review
,”
ASME 2010 International Manufacturing Science and Engineering Conference,
Erie, PA
.
5.
Solchenbach
,
T.
,
Plapper
,
P.
, and
Cai
,
W. W.
,
2014
, “
Electrical Performance of Laser Braze-welded Aluminum-copper Interconnects
,”
J. Manuf. Processes
,
16
(
2
), pp.
183
189
.
6.
Cai
,
W. W.
,
Kang
,
B.
, and
Hu
,
S. J.
,
2017
,
Ultrasonic Welding of Lithium-ion Batteries
,
ASME Press
,
New York
.
7.
Kang
,
B.
,
Cai
,
W. W.
, and
Tan
,
C.-A.
,
2014
, “
Dynamic Stress Analysis of Battery Tabs Under Ultrasonic Welding
,”
J. Manuf. Sci. Eng.
,
136
(
4
),
041011
.
8.
Luo
,
Y.
,
Chung
,
H.
,
Cai
,
W. W.
,
Rinker
,
T.
,
Hu
,
S. J.
,
Asibu
,
E. K.
, and
Abell
,
J.
,
2018
, “
Joint Formation in Multilayered Ultrasonic Welding of Ni-Coated Cu and the Effect of Preheating
,”
J. Manuf. Sci. Eng.
,
140
(
11
),
111003
.
9.
Xi
,
L.
,
Banu
,
M.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J.
,
2016
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
J. Manuf. Sci. Eng.
,
139
(
1
),
011008
.
10.
Zhao
,
N.
,
Li
,
W.
,
Cai
,
W. W.
, and
Abell
,
J.
,
2014
, “
A Fatigue Life Study of Ultrasonically Welded Lithium-Ion Battery Tab Joints Based on Electrical Resistance
,”
J. Manuf. Sci. Eng.
,
136
(
5
),
051003
.
11.
Brand
,
M. J.
,
Kolp
,
E. I.
,
Berg
,
P.
,
Bach
,
T.
,
Schmidt
,
P.
, and
Jossen
,
A.
,
2017
, “
Electrical Resistances of Soldered Battery Cell Connections
,”
J. Energy Storage
,
12
, pp.
45
54
.
12.
Schmidt
,
P. A.
,
Schmitz
,
P.
, and
Zaeh
,
M. F.
,
2016
, “
Laser Beam Welding of Electrical Contacts for the Application in Stationary Energy Storage Devices
,”
J. Laser Appl.
,
28
(
2
),
022423
.
13.
Yim
,
B.-S.
,
Shin
,
Y.-E.
, and
Kim
,
J.-M.
,
2017
, “
Ball Grid Array Interconnection Properties of Solderable Polymer–Solder Composites With Low-Melting-Point Alloy Fillers
,”
J. Electron. Packaging
,
139
(
4
),
041007
.
14.
Park
,
J. H.
,
Ku
,
J.
,
Lim
,
J. W.
,
Choi
,
J.-M.
, and
Son
,
I. H.
,
2016
, “
Adhesive Interlayer Between Active Film and Current Collector for Improving the Performance of Silicon Anodes of Li-ion Batteries
,”
J. Electroanal. Chem.
,
778
, pp.
53
56
.
15.
Zhu
,
X.
,
Li
,
Y.
,
Chen
,
G.
, and
Wang
,
P.-C.
,
2013
, “
Curing-Induced Distortion Mechanism in Adhesive Bonding of Aluminum AA6061-T6 and Steels
,”
J. Manuf. Sci. Eng.
,
135
(
5
),
051007
.
16.
Zhu
,
X.
,
Li
,
Y.
,
Ni
,
J.
, and
Lai
,
X.
,
2016
, “
Curing-Induced Debonding and Its Influence on Strength of Adhesively Bonded Joints of Dissimilar Materials
,”
J. Manuf. Sci. Eng.
,
138
(
6
),
061005
.
17.
Mazhari
,
E.
, and
Nassar
,
S. A.
,
2017
, “
A Coupled Peel and Shear Stress-Diffusion Model for Adhesively Bonded Single Lap Joints
,”
J. Manuf. Sci. Eng.
,
139
(
9
),
091007
.
18.
Zhu
,
X.
,
Yang
,
X.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2016
, “
Reinforcing Cross-Tension Strength of Adhesively Bonded Joints Using Metallic Solder Balls
,”
Int. J. Adhes. Adhes.
,
68
, pp.
263
272
.
19.
Wu
,
T.
,
Zhang
,
Q.
,
Zhang
,
C.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2018
, “
Process Variables Influencing Solder Reinforced Adhesive (SRA) Performance
,”
J. Manuf. Process.
,
31
, pp.
440
452
.
20.
Kim
,
P. G.
, and
Tu
,
K. N.
,
1996
, “
Morphology of Wetting Reaction of Eutectic SnPb Solder on Au Foils
,”
J. Appl. Phys.
,
80
(
7
), pp.
3822
3827
.
21.
Chung
,
C.-L.
,
Moon
,
K.-S.
, and
Wong
,
C. P.
,
2005
, “
Influence of Flux on Wetting Behavior of Lead-Free Solder Balls During the Infrared-Reflow Process
,”
J. Electron. Mater.
,
34
(
7
), pp.
994
1001
.
22.
Laurila
,
T.
,
Vuorinen
,
V.
, and
Kivilahti
,
J. K.
,
2005
, “
Interfacial Reactions Between Lead-Free Solders and Common Base Materials
,”
Mater. Sci. Eng.: Rep.
,
49
(
1–2
), pp.
1
60
.
23.
Subramanian
,
K. N.
,
2017
,
Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics
,
Springer
,
New York
.
You do not currently have access to this content.