Abstract

Chatter is a self-excited and unstable vibration phenomenon during machining operations, which affects the workpiece surface quality and the production efficiency. Active chatter control has been intensively studied to mitigate chatter and expand the boundary of machining stability. This paper presents a discrete time-delay optimal control method for chatter suppression. A dynamical model incorporating the time-periodic and time-delayed characteristic of active chatter suppression during the milling process is first formulated. Next, the milling system is represented as a discrete linear time-invariant (LTI) system with state-space description through averaging and discretization. An optimal control strategy is then formulated to stabilize unstable cutting states, where the balanced realization method is applied to determine the weighting matrix without trial and error. Finally, a closed-loop stability lobe diagram (CLSLD) is proposed to evaluate the performance of the designed controller based on the proposed method. The CLSLD can provide the stability lobe diagram with control and evaluate the performance and robustness of the controller cross the tested spindle speeds. Through many numerical simulations and experimental studies, it demonstrates that the proposed control method can make the unstable cutting parameters stable with control on, reduce the control force to 21% of traditional weighting matrix selection method by trial and error in simulation, and reduce the amplitude of chatter frequency up to 78.6% in experiment. Hence, the designed controller reduces the performance requirements of actuators during active chatter suppression.

References

1.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
785
808
.
2.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
3.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
.
4.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
5.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
.
6.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
.
7.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2017
, “
Dynamics and Stability Prediction of Five-Axis Flat-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061015
.
8.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
9.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
J. Sound Vib.
,
301
(
3–5
), pp.
592
607
.
10.
Yang
,
Y.
,
Muñoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
834
842
.
11.
Sajedi Pour
,
D.
, and
Behbahani
,
S.
,
2015
, “
Semi-Active Fuzzy Control of Machine Tool Chatter Vibration Using Smart MR Dampers
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
421
428
.
12.
Dohner
,
J. L.
,
Lauffer
,
J. P.
,
Hinnerichs
,
T. D.
,
Shankar
,
N.
,
Regelbrugge
,
M.
,
Kwan
,
C.-M.
,
Xu
,
R.
,
Winterbauer
,
B.
, and
Bridger
,
K.
,
2004
, “
Mitigation of Chatter Instabilities in Milling by Active Structural Control
,”
J. Sound Vib.
,
269
(
1
), pp.
197
211
.
13.
Monnin
,
J.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2014
, “
Optimal Control for Chatter Mitigation in Milling—Part 1: Modeling and Control Design
,”
Control Eng. Pract.
,
24
, pp.
156
166
.
14.
Monnin
,
J.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2014
, “
Optimal Control for Chatter Mitigation in Milling—Part 2: Experimental Validation
,”
Control Eng. Pract.
,
24
, pp.
167
175
.
15.
Zhang
,
X.
,
Wang
,
C.
,
Gao
,
R. X.
,
Yan
,
R.
,
Chen
,
X.
, and
Wang
,
S.
,
2016
, “
A Novel Hybrid Error Criterion-Based Active Control Method for On-Line Milling Vibration Suppression With Piezoelectric Actuators and Sensors
,”
Sensors
,
16
(
1
), E68.
16.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
J.
,
Yan
,
R.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Multi Harmonic and Random Stiffness Excitation for Milling Chatter Suppression
,”
Mech. Syst. Signal Process.
,
120
, pp.
777
792
.
17.
Van Dijk
,
N. J. M.
,
Van
,
d. W. N.
,
Doppenberg
,
E. J. J.
,
Oosterling
,
H. A. J.
, and
Nijmeijer
,
H.
,
2012
, “
Robust Active Chatter Control in the High-Speed Milling Process
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
901
917
.
18.
Chen
,
M.
, and
Knospe
,
C. R.
,
2007
, “
Control Approaches to the Suppression of Machining Chatter Using Active Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
220
232
.
19.
Huang
,
T.
,
Chen
,
Z.
,
Zhang
,
H.-T.
, and
Ding
,
H.
,
2015
, “
Active Control of an Active Magnetic Bearings Supported Spindle for Chatter Suppression in Milling Process
,”
J. Dyn. Syst. Meas. Control
,
137
(
11
),
111003
.
20.
Hall
,
S. R.
, and
Wereley
,
N. M.
,
1993
, “
Performance of Higher Harmonic Control Algorithms for Helicopter Vibration Reduction
,”
J. Guid. Control Dynam.
,
16
(
4
), pp.
793
797
.
21.
Chen
,
Z.
,
Zhang
,
H.-T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Adaptive Active Chatter Control in Milling Processes
,”
J. Dyn. Syst. Meas. Control
,
136
(
2
),
021007
.
22.
Stol
,
K.
, and
Balas
,
M.
,
2001
, “
Full-State Feedback Control of a Variable-Speed Wind Turbine: A Comparison of Periodic and Constant Gains
,”
J. Solar Energy Eng.
,
123
(
4
), pp.
319
.
23.
Psiaki
,
M. L.
,
2001
, “
Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation
,”
J. Guid. Control Dynam.
,
24
(
2
), pp.
386
394
.
24.
Stol
,
K.
,
Moll
,
H.-G.
,
Bir
,
G.
, and
Namik
,
H.
(
2009
). “
A Comparison of Multi-Blade Coordinate Transformation and Direct Periodic Techniques for Wind Turbine Control Design
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Jan. 5–8
,
Orlando, Florida
.
25.
Witrant
,
E.
,
Fridman
,
E.
,
Sename
,
O.
, and
Dugard
,
L.
,
2016
,
Recent Results on Time-delay Systems: Analysis and Control
,
Springer
,
New York
.
26.
Fridman
,
E.
,
2014
,
Introduction to Time-Delay Systems: Analysis and Control
,
Springer
,
New York
.
27.
Suplin
,
V.
,
Fridman
,
E.
, and
Shaked
,
U.
,
2007
, “
Sampled-Data H-Infinity Control and Filtering: Nonuniform Uncertain Sampling
,”
Automatica
,
43
(
6
), pp.
1072
1083
.
28.
Ge
,
J.
, and
Lin
,
C. F.
,
1998
, “
H-Infinity State Feedback Control for Continuous-Time Active Fault Tolerant Control Systems
,”
Guidance, Navigation, and Control Conference and Exhibit
,
Boston, MA
, pp.
1680
1695
.
29.
Zhang
,
X.
,
Wang
,
C.
,
Liu
,
J.
,
Yan
,
R.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Robust Active Control Based Milling Chatter Suppression With Perturbation Model via Piezoelectric Stack Actuators
,”
Mech. Syst. Signal Process.
,
120
, pp.
808
835
.
30.
Huang
,
T.
,
Zhu
,
L.
,
Du
,
S.
,
Chen
,
Z.
, and
Ding
,
H.
,
2018
, “
Robust Active Chatter Control in Milling Processes With Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
),
p. 101005
.
31.
Li
,
Y.
, and
Levine
,
W. S.
,
2009
, “
Models for Human Postural Regulation That Include Realistic Delays and Partial Observations
,”
Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly With 2009 28th Chinese Control Conference
,
Shanghai, China
,
Dec. 15–18
, pp.
4590
4595
.
32.
Haraguchi
,
M.
, and
Hu
,
H. Y.
,
2008
, “
Using a New Discretization Approach to Design a Delayed LQG Controller
,”
J. Sound Vib.
,
314
(
3–5
), pp.
558
570
.
33.
Zhang
,
H.-T.
,
Wu
,
Y.
,
He
,
D.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
54
61
.
34.
Zhou
,
K.
,
Gregory
,
S.
, and
Wu
,
E.
,
1999
, “
Balanced Realization and Model Reduction for Unstable Systems
,”
Int. J. Robust Nonlin. Control
,
9
(
3
), pp.
183
198
.
35.
Insperger
,
T. S.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G. B.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
J. Manuf. Sci. Eng.
,
128
(
4
), p.
913
.
36.
Altintas
,
Y.
,
Stepan
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
37.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
38.
Li
,
M.
,
Zhang
,
G.
, and
Huang
,
Y.
,
2012
, “
Complete Discretization Scheme for Milling Stability Prediction
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
187
199
.
39.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
40.
Wang
,
Y.
,
Jun
,
W. U.
, and
Wei-Hua
,
X. U.
,
2007
, “
A Balanced Model Reduction Method Capable of Tackling Unstable Discrete-Time Systems
,”
J. Circ. Syst.
,
12
(
3
), pp.
26
32
.
41.
Galdino dos Santos
,
R.
, and
Teixeira Coelho
,
R.
,
2014
, “
A Contribution to Improve the Accuracy of Chatter Prediction in Machine Tools Using the Stability Lobe Diagram
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021005
.
42.
Ding
,
Y.
,
Niu
,
J.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Numerical Integration Method for Stability Analysis of Milling With Variable Spindle Speeds
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011010
.
You do not currently have access to this content.